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Abstract

Chemical reactions represents fundamental processes through which the chemical com-

position of molecules and solids is transformed. During reactions chemical bonds between

atoms are broken or formed passing from an initial stable state, identified as the reactants,

to a final stable state, identified as the products. During this transformation the atomic con-

figuration is changing following a pathway which can be identified by a collective reaction

coordinate. The identification of such pathway is of key importance to understand the reac-

tion mechanisms and to determine the kinetic properties, i.e. the velocity of the considered

reaction.

Through molecular simulations is possible to assign to each three-dimensional molecular

configuration ~R ∈ R3N of a molecule with N atoms a potential energy surface represented

by ~R× V (~R). This function V describes the potential energy of the system and locates the

stable molecular configurations, as reactant and product states, in a local minimum. Using

minimization algorithms one can optimize an initial geometrical conformation reaching one

of these minima and therefore obtaining information about the molecular geometries for the

stable molecules. The search for pathways connecting different minima requires special al-

gorithms to be achieved.

From a geometrical perspective this problem corresponds to draw a pathway in the

(3N + 1)-dimensional euclidean space, lying on the potential energy surface, connecting

the atomic configurations corresponding to two different minima (reactants and products) of

this potential energy surface and passing through one ore more intermediate saddle points.

The reaction pathway can be defined as the Minimum Energy Path (MEP), which is the en-

ergy path between the initial and final minima constructed by the union of steepest descent

paths from the intermediate lowest saddle points on the energy surface to these minima.

There exist several methods to find the minimum energy paths and, consequently, the sad-



dle points on a given energy hypersurface. In this work we will consider and describe with

details the Nudged Elastic Band (NEB) method.

In this thesis we will implement the NEB method in a general computational framework

so that it can be easily adopted to different molecular models, from classical to quantum

simulations. In the second part we will investigate, for the first time, the behaviour and

performances of the NEB algorithm in energy surfaces that are affected by stochastic er-

rors. This case is important since it simulates the application to Quantum Monte Carlo

methods, an emerging techniques in quantum chemistry that provides energies and forces

with a statistical error. Our results demonstrate that the introduction of the statistical error

in a realistic regime does not alter significantly the overall performance of the NEB algorithm.
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Chapter 1

Molecular Simulations

Different levels of theory can be used to study the properties of molecular systems. The

different approach differs by the approximations which are made in describing the system

and in the description of the molecular forces. In Quantum Mechanics (QM) approaches elec-

trons and nuclei are both explicitly considered, and the corresponding Schröndigner equation

is the fundamental equation to be solved, while in Molecular Mechanics (MM) the electronic

detail is not explicitly considered. The nuclei are therefore moving in an empirical potential

which is function of their position only.

In this chapter we shortly review the methods used to treat molecular systems. The

calculations of molecular potential energy surfaces are indeed the core of the algorithms to

search for transition states which are the subject of our work.

1.1 Quantum Mechanics

In molecular systems is defined the Hamiltonian operator, Ĥ, which represents the total

energy of the wave function:
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Ĥ = −
∑
A

1

2MA

∇2
A −

∑
i

1

2
∇2

i +
∑
A>B

ZAZB

RAB

−
∑
Ai

ZA

rAi

+
∑
i>j

1

rij
(1.1)

where the terms express, in this order, the kinetic energy for the nuclei, the kinetic energy for

the electrons, the repulsion among nuclei, the attraction electrons-nuclei and the repulsion

among the electrons. The first two terms are the part of the operator for the kinetic energy

while the other three define the potential energy operator. Capital letters as A,B refer to

nuclei, integers as i,j to electrons and Z represents the nuclear charge. It is considered that

electron charge and mass have value 1, while MA refers to the nuclear masses. R is repre-

senting nuclear coordinates and r electronic coordinates.

The Hamiltonian is a second order differential operator, due to ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

being x,y and z the Cartesian coordinates used to determine the positions.

The time-dependent Schröndinger equation defines how the quantum state of a

physical system varies in time[1]:

i}
∂

∂t
ψ = Ĥψ (1.2)

where

- ψ it is the wave function defining the quantum state of the physical system. It is a

function with two inputs, ψ(~R, t):

. ~R ∈ R3N is the position of the N quantum particles (electrons and nuclei for

instance) of the system.

. t ∈ R is referring to time.

- } is known as the reduced Planck’s constant, which is the Planck’s constant (h =

6.62606896× 10−34m2kg/s) divided by 2π.
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If one is interested only in statiornary states of the molecular hamiltonian, the time-

independent Scröndinger equation can be used. It is a partial differential eigenvalue

function

Eψ = Ĥψ (1.3)

being E the energy of the state. The energy En gives the eigenvalues and for each allowed

value, the Hamiltonian operator, Ĥ acts on an eigenfunction, ψEn

EnψEn = ĤψEn (1.4)

The Schröndinger equation can be solved analytically for only a few simple problems,

imposing some requirements as boundary conditions and that the wave function multiplied

by its complex conjugate is the normalized probability density of having the particles on

position ~R

∫ ∞
−∞

ψ∗ψ =

∫ ∞
−∞
|ψ|2 = 1 (1.5)

Since we are only able to solve for some specific and easy problems, there is an assumption

which simplifies the wave function. Considering that the nuclei masses are much bigger

(about 2000 times) than the electrons masses it is possible to split the wave function as a

product of two functions:

ψtotal = ψelectronsψnuclei (1.6)

thus decoupling nuclear and electronic motion.

This is called the Born-Oppenheimer approximation. When it is used, the nuclei are con-

sidered as parameters and the equation is solved for the electrons at fixed nuclear positions.
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1.2 Quantum methods affected by stochastic error

Different techniques have been developed during the last 50 years by physicists and

chemists to solve numerically the equation 1.1 for molecules and solids. Approximations of

different kind are necessaries to approach systems composed of several atoms and tens or

hundreds of electrons. An overview of these methods can be found in [2]. All these methods

within their approximations, can provide an evaluation of the total energy and the forces of a

common atomic configuration with a precision that can be easily reduced as small as desired

with an affordable computational cost. Recently Quantum Monte Carlo (QMC) methods [3,

4, 5, 6, 7, 8, 9] are emerging technique to solve electronic many-body problems.

The Variational Monte Carlo (VMC) consists in the stochastic integration of the expec-

tation value of the Hamiltonian on a given ansatz wave function.

Correlated many-body wave functions used in VMC have a given functional form, de-

termined by a finite (large) number of variational parameters usually obtained through an

optimization procedure, with a statistical iterative technique that is converging to the low-

est variational many-body wave function for the system. One advantage of this approach

is that wave function parametrizations that go beyond the usual expansion in Slater deter-

minants can be often implemented in a simple way and without significant computational

overload. In particular, electronic correlation can be described through the Jastrow factor,

a bosonic term (positive and symmetric under electron permutations) depending explicitly

on the electronic and nuclear positions. Another group of QMC methods is based on the

stochastic solution of the Schrödinger equation through projection techniques. For instance

in the Diffusion Monte Carlo (DMC) technique, the ground state component of a given trial

function is extracted by a long enough imaginary time diffusion process [4, 5, 8].

QMC methods have been successfully applied to study different systems such as: mate-

rials [5, 10, 11, 12], hydrogen bonding [13] and Van der Waals [14] networks and electronic

excitations in gas phase [15, 16, 9] and within a QM/MM approach.
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One characteristic of QMC methods is that all the calculated quantities are affected

by stochastic errors. Since these errors are slowly decreasing as a function, 1/
√
T , of the

computational time T , the applications of standard tools for reaction pathway search has to

be adapted to this characteristic.

1.3 Molecular Mechanics

From the point of view of the Molecular Mechanics the electronic motion is ignored and

the total energy V is a function of the nuclear positions [1]

V (R) =
∑

i∈bonds

ki
2

(li − l0i )2 +
∑

i∈angles

ki
2

(
θi − θ0i

)2
+

∑
n∈torsions

Vn
2

(1 + cos (nω − r)) +

+
N∑
i=1

N∑
j=i+1

(
4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
qiqj

4φε0rij

)
(1.7)

The first term models the interaction between bonded atoms as a classical harmonic po-

tential (a in figure 1.1), where li is the bond length and l0i the reference bond length. ki is

the harmonic constant, which can be different for each bond.

The second term represents the contribution given by bond angles (b in figure 1.1); an

harmonic potential which models the relation between groups of three bonded atoms, θi is

the angle they form and θ0i the reference angle. As in the case of bond stretching ki is the

harmonic constant, in this case, for each angle.

The third term is a torsional potential modelling how the energy changes as a function

of a dihedral angle (i.e., the interaction between 4 atoms as it is appearing in the c design of

figure 1.1). To define a dihedral angle four bonded atoms are selected, the first three form a

plane and the last three form a second plane, and the angle determined by these two planes

is the dihedral one, ω. Vn is related to the bond rotation barrier, n is called multiplicity and
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is the number of minima in the expression varying the dihedral angle from 0 to 2π; and γ is

the phase factor.

The fourth term includes the contribution of the non-bonded interactions (d in figure 1.1).

The Coulomb potential is used for electrostatic interactions and is obtained by adding all

the interactions between point charges. The Lennard-Jones potential involves van der Waal

forces, and describes repulsive steric effects between atoms not covalently bonded.

Figure 1.1: Graph showing all the force field interactions affecting the atoms, (a) the bond
stretching, (b) the angle bending, (c) the torsion and (d) the non bonded interaction.

http://accessscience.com

From a computational point of view, using Molecular Mechanics allows to study systems

with 106 atoms, thanks to the simplified description of the interactions; calculations based

on the Schröndinger equations are much more accurate but so far limited to few hundreds

of atoms.
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Chapter 2

Potential Energy Surface and

Minimization techniques

Once that has been posed the way to get the energy of a system, from a Quantum Me-

chanics (QM) and/or Molecular Mechanics (MM) perspective, it is possible to introduce the

concept of Potential Energy Surface (PES) as the mathematical or graphical relationship

between the energy of a system and its geometry[17].

2.1 Coordinates

Several different types of coordinates are used to define a system with N particles. One

kind of coordinates is given by the Cartesian coordinates, (x1, x2, x3) for each atom, having

in total 3N coordinates. Other common possibility is to pose 3N − 6 internal coordinates.

The internal coordinates refer to the bonds, angles and torsional angles determining the

system, terms that are mentioned in section 1.3.

The coordinates fully determine the geometry of the system, knowing one of the coordi-

nates type it is possible to get the other one by a simple geometric transformation.
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2.2 Energy

The energy of a system is given by the position of each particle, V (~R), so it is a multi-

dimensional function of the coordinates, which represents the PES. It is important to know

that there may be a very large number of minima on the energy surface, knowing the one

with the lowest energy as the global energy minimum and the points with lowest energy

value in an open interval contained in the initial domain as local minima . All these minima,

from a chemical point of view, are referring to equilibrium states of a system. To identify

those minimum points it will be used a minimization algorithm. There exist several methods

but we will focus on the approaches most common in molecular modelling.

Figure 2.1: Example of a Potential Energy Surface (PES) containing several local minima.

It is also interesting to study the conformational changes between two minimum energy

structures, in order to know the variation of the relative position of the atoms during a

chemical reaction or a diffusion event. The highest point between two minima is a really

special one because is a saddle point. Both minima and saddle points are stationary points

on the energy surface, and its first derivatives respect to all the coordinates are zero. The
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importance of well describing the saddle point will be pointed out in the next chapter.

2.3 Energy Optimization Methods

The minimization problem can be formulated as the following:

Being V an energy function depending on the positions R1, R2, ..., Ri, ..., find the values

of those variables such that V (R1, R2, ..., Ri, ...) = V (~R) is a minimum value.

min
~R
V (~R) (2.1)

At a minimum point the first derivative of the function respect to every variable is zero,

while the second derivative is positive:

∂V

∂Ri

= 0;
∂2V

∂R2
i

> 0

The choice of the computationally best algorithm depends on the balance between the

velocity on getting the solution and the quantity of memory used, the goal is to get the

fastest method using the least amount of memory. The best methods are different for Quan-

tum Mechanics and Molecular Mechanics. One of the main differences between minimization

algorithms is the use of derivatives or not, and different categories of methods will be re-

ported next. The use of second derivatives gives, in principle, the most accurate results

but methods exploiting the Hessian matrix cannot be applied to large systems, since they

become dramatically slow and memory demanding.
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The general scheme for a minimization method is:

V is the function

~Rj is initial position

while Rj is not minimum (different criteria for each method)

set new position ~Rj+1 = f(~Rj)

return ~Rj

Non-derivative Optimization Methods

They do not involve any derivative of the function in the minimum search.

The Simplex method

A simplex is a polytope with n+1 vertices, being n the dimension of the space where the

energy is computed. For instance, an energy function defined on x and y coordinates will

define a simplex as a triangle.

The simplex algorithm locates a minimum by performing successive pivot operations

which give an improved basic feasible solution; the choice of the operation at each step

is largely determined by the requirement that this pivot does improve the solution. The

possible operations are:

- reflection of the vertex with the highest value through the opposite face of the simplex;

- reflection and expansion;

- contract the simplex along one dimension, from the highest point;

- contract the simplex in all directions.

Usually the simplex method is not considered good for quantum mechanics calculations

because it can be quite expensive in terms of computing time.
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The Sequential Univariate Method

This method is better for Quantum Mechanics calculations, and also easier than the sim-

plex algorithm to implement. The idea behind is to assume that the function to minimize is

parabolic in all the dimensions and obtain the minimum for this parabolas in each coordinate.

- Choose step h

- ∀ i coordinate index

Compute R∗i = Ri + h and R∗∗i = Ri + 2h

Compute Rmin in the parabola passing through Ri, R
∗
i and R∗∗i

Substitute Ri by Rmin

- Repeat till the changes in all the coordinates are sufficiently small and convergence is

achieved.

Derivative Optimization Methods

This family of methods uses first derivatives of the function to minimize. In the case of

energy, such approach provides really useful information, the force acting on the system is

the minus gradient of the potential function V

~F = −∂∇V
∂ ~R

, (2.2)

which is pointing to the minimum energy configuration. The second derivatives

∂ ~F

∂ ~R
(2.3)

indicate the curvature of the function, which gives information on where the function is

changing direction, meaning by direction uphill or downhill.
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First-order Methods

Steepest Descent

The Steepest Descent (SD) is a popular method in Molecular Mechanics when the initial

chosen point is far from the minimum. Given an initial configuration ~Rj and computing the

force vector in that position, ~Fj, the iteration step is

~Rj+1 = ~Rj + h~Fj (2.4)

being h an adjustable parameter.

After some iterations the point with force close to zero it will be reached; only in the

case of having flat regions this algorithm will be not able to achieve the minimum.

This will be the minimization method used in this work, as it will be shown in the next

chapters.

Conjugate gradients

The Conjugate Gradient (CG) method improves upon the SD method by following the

conjugate search directions instead of the force. It is a common method in Molecular Me-

chanics when the initial position is close to the minimum.

The main steps are:

- Initialize the search direction along the force

~d0 = ~F0

- Compute the step size λ ~Rj+1 = ~Rj + λ~dj

- Set the new conjugate search direction ~dj+1 = ~Fj+1 + γ ~dj

with γ =
~Fj+1(~Fj+1 − ~Fj)

|~Fj|2



CHAPTER 2. POTENTIAL ENERGY SURFACE AND MINIMIZATION
TECHNIQUES 13

Figure 2.2: Application of steepest descents to the function x2 + 2y2

Molecular Modelling Principles and Applications; A.R.Leach (2001)

Second-order Methods

The second order methods build up information about the second derivatives and use

them to step toward the minimum. The most used second order methods are the Quasi-

Newton Methods, usually applied in Quantum Mechanics. Newton’s method assumes that

the function can be locally approximated as a quadratic one in the region around the min-

imum, and uses the first and second derivatives to find the stationary point. They do not

compute directly the Hessian matrix but approximate by analysing successive gradient vec-

tors.
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Limited-memory Broyden-Fletcher-Goldfarb-Shanno

In this method the inverse of the Hessian matrix H−1, where

H =



∂2V

∂R1R1

∂2V

∂R1R2

· · · ∂2V

∂R1RN

∂2V

∂R2R1

∂2V

∂R2R2

· · · ∂2V

∂R2RN
...

...
. . .

...

∂2V

∂RNR1

∂2V

∂RNR2

· · · ∂2V

∂RNRN


(2.5)

is constructed iteratively, starting from a diagonal matrix. Two options can be considered:

Search direction Use directly H−1

~Rj+1 = ~Rj + ~FjH
−1
j

~dj = ~FjH
−1
j

~Rj+1 = ~Rj + ~FjH
−1
j

Compute the step size λ

~Rj+1 = ~Rj + λ~dj



15

Chapter 3

Minimum Energy Paths

3.1 Energy barrier

The interest of the thesis is centred on the energy profile of chemical processes, related to

the reaction rate, which means how fast the reaction takes place, from one chemical struc-

ture in equilibrium to another structure in equilibrium (two distinct minima in the potential

energy surface). To understand the kinetics it is necessary to investigate the nature of the

energy surface away from the minimum points. It is essential to understand what geomet-

rical changes are involved on the kinetics and how the energy varies during the transition

(figure 3.2). The initial minimum point is known as reactant, the final one as product and

the energy path between them as reaction path. In this context the reaction is going to

be considered a variation on the internal coordinates of the system (bonds, angles, dihedral

angles); the atomic configuration of the system is changing. For a chemical reaction to occur

there is an energy value which must be overcome, the activation energy. It is the minimum

energy required to activate the chemical process and it is denoted as Ea. The energy barrier

is the maximum value of the energy along the transition pathway, and the configuration of

the system with this energy value is called the transition state.

When a system moves from one minimum configuration to another minimum configura-

tion it is quite intuitive to think the energy increases from the initial minimum (reactant)

to a maximum point in the reaction pathway and then falls to the final minimum configura-
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tion (product). The maximum is a first-order saddle point, so the derivatives of the energy

function on it are equal to zero and the Hessian matrix has just one negative eigenvalue,

what means it is a minimum configuration for every direction perpendicular to the energy

transition pathway but not for the direction along the path, where it is a maximum. Since

a chemical system tends to adopt the lowest energy configuration, it is reasonable that even

during a chemical reaction is occurring and the system configuration moves away from the

equilibrium state, this system evolution will use the least possible quantity of energy. The

saddle point corresponds to the transition state and marks the energy barrier.

Figure 3.1: Plot of a reaction path where the configuration change (destruction and creation
of bonds) of a chemical system is represented by the evolution of the reaction coordinate
and the energy values related.

Ea = ∆G‡

Understanding completely the mechanism and the energy characterization of chemical

reactions is an important and challenging task on theoretical chemistry. Now, once the the-

sis motivation is posed, it is necessary to define and explain all the concepts and tools useful

to achieve that purpose.
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Figure 3.2: Upper bi-dimensional energy surface with a dashed line as the reaction path
going from a global minimum to a relative one, which represents different configurations for
the same quantity of atoms; lower the plot of the reaction path sketching the relationship
between the reaction coordinate and the energy of the system

Computational Chemistry; E.G. Lewars; Kluwer Academic Publishers (2003)

3.2 Transition State Theory

The interaction energy among nuclei and electrons can be obtained from an approximate

solution of the Schröndinger equation (section 1.1) or from an otherwise determined potential

energy function, as the one explained in section 1.3, in which the electronic detail is neglected.

For obtaining accurate estimates of reaction the Transition State Theory (TST) is applied,

that uses purely statistical methods. The TST depends on, mainly, two assumptions[18]:
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- A Boltzmann distribution is established and maintained on all the transition configu-

rations (reactant states)

- The reacting trajectory, going from the product to the reactant crosses a dividing

surface of dimension d-1, when d is the degrees of freedom in the system, only once.

The rate constant is defined as

kreactant→product = Ae
− Ea

kBT (3.1)

where

A =

∏3N
i νreactanti∏3N−1

i ν‡i
(3.2)

being Ea the minimum energy required to activate the chemical process, so the difference

between the energy of the saddle point and the local energy of the initial configuration (re-

actant), νi, the corresponding normal mode frequency (‡ is referring to the transition state),

kB the Boltzmann constant and T the temperature.

3.3 Minimum Energy Path

From a chemical point of view the Minimum Energy Path (MEP) is the path lying on

the potential energy surface between the reactant and product configurations, offering least

resistance to the atomic motion.

Mathematically the MEP is the energy path between reactant (R) and product (P)

coordinates going through the intermediate saddle point on the energy profile. From the

saddle points, the path is the union of steepest descent paths to the minima. Assuming the

potential energy function, V (~R), with the two minima V(R) and V(P), the MEP connecting

these two states, R and P, is a smooth curve ϕ satisfying
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(∇V )⊥ (ϕ) = 0, (3.3)

where (∇V )⊥ is the component of ∇V normal to ϕ,

(∇V )⊥ (ϕ) = ∇V − (∇V, τ̂) τ̂ . (3.4)

Here τ̂ denotes the unit tangent of the curve ϕ, and (�, �) denotes the Euclidean inner

product. In appropriate mathematical setting, one can prove that the MEP is the most

probable path that the system will take under the over-damped dynamics to move between

R and P, crossing the barriers in-between.

Figure 3.3: An example of a bi-dimensional smooth energy landscape and the minimum
energy path (MEP) marked in white.

www.math.nus.edu.sg

It is important to underline that for the usual (bio)chemical systems, with a large number

of atoms, hundreds or thousands, the potential energy surfaces are much more complex than

the represented on the figure 3.3, due to the high dimensionality. This fact stands in the

way of computing the minimum energy paths on the non trivial potential energy surfaces,
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often not known analytically. Therefore the need of introducing mathematical techniques to

compute the geometrical MEP’s becomes a fundamental task.

3.4 Methods for finding saddle points and MEPs

Many different methods have been developed for finding MEPs and saddle points. Such

methods involve maximization of one degree of freedom, the reaction coordinate, and mini-

mization in other degrees of freedom, since the saddle points to find are of first-order[1, 19].

The Drag method

It consists in holding one degree of freedom fixed, the so-called drag coordinate, and

relaxing the other d -1 degrees of freedom, being d the dimension. The drag coordinate is

increased stepwise and fixed while the other degrees of freedom are relaxed. The choice of

the drag coordinate can be an intuitive guess or the straight line interpolation between the

reactant and the product figure 3.4). Starting from the initial state the inverted force acting

on the system along the drag coordinate is chosen and the velocity Verlet algorithm with a

projected velocity simulates the dynamics of the system, till the saddle point is reached.

One important disadvantage of this method is the choice of the drag coordinate. This

choice is crucial, because there are many cases in which the method fails, confining the so-

lution in an energy valley, due to the drag coordinate is at a large angle to the direction of

the saddle point.

The NEB method

In the Nudged Elastic Band (NEB) method, which is a chain method[20], a string of

replicas (images) of the system between the reactant and product is created and the images

are connected with springs; an optimization algorithm is applied to relax the images down
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Figure 3.4: Schematic description of the Drag algorithm appears. It consists on fixing one
degree of freedom which is increased stepwise while relaxing the other degrees of freedom.
In this case the method cannot locate the saddle point.

Methods for finding saddle points and minimum energy paths;
G.Henkelman, G. Jóhannesson and H. Jónsson

towards the MEP, using the parallel spring force and the perpendicular component of the

true force of every image, respect a vector defined depending on the path connecting the

images and the energy values at every of these images (figure 3.5). At the end the replicas

are located on the MEP, allowing to interpolate between such points and therefore obtaining

the saddle point.

It is not going to give only the estimation of the saddle point but a global overview of

the energy landscape.
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Figure 3.5: Schematic description of the NEB algorithm, where the guessed initial pathway,
the line between R and P, and some other pathways obtained by different iterations are
shown.

Methods for finding saddle points and minimum energy paths;
G.Henkelman, G. Jóhannesson and H. Jónsson

The CI-NEB method

It is a modified version of the NEB, named Climbing Image-NEB. The improvement

consists of choosing, after some steps, the highest energy image and applying on it different

forces than on the other images, only the inverted parallel component of the true force.

Thanks to this modification, at the end of the method one of the images is exactly set in the

saddle point.

The NEB method has been implemented and tested by us; a detailed description of our

work will be presented in chapters 4 and 5.
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The CPR method

It is the Conjugate Peak Refinement (CPR) method. As the NEB the CPR method also

gives the MEP as final result. A set of images is generated, one at a time, between the initial

and final configurations. The iterations involve the following steps:

- Set the vector between product, x0 and reactant, xend

- Find out the maximum on the direction of the vector ⇒ yi

- Perform a minimization along all the conjugate vectors ⇒ xi

- Repeat the procedure for x0 − xi and xi − xend

It stops when the maximum along the path is characterized by a smaller gradient than the

given tolerance need for finding a saddle point.

The Ridge method

The Ridge method sets two images and keeps moving in cycles of ’side steps’ and ’down-

hill steps’. Firstly a straight line interpolation between the product, P, and the reactant, R,

is performed and the maximum of energy along this line is found. Considering the maximum

set at point a (figure 3.7). Then, two replicas of the system are created on the line, one

on each side of the maximum, x′0 and x′1, the ’side steps’, as it is shown in the figure 3.7.

Now the force is evaluated at the two images and they are moved in the direction of their

forces a certain distance, the ’downhill-step’. This generates points x′′0 and x′′1. First cycle

is complete. A new cycle starts by maximizing along the line [x′′0, x
′′
1] to obtain the point b,

and so on. The side-step and downhill-step distance varies considering the proximity to a

saddle point and the surrounding energy values.
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Figure 3.6: Schematic description of the Conjugate Peak Refinement (CPR) algorithm. The
contour lines show the energy landscape. An initial guess of the path is made, here the
straight interpolation line (-.-.-) from the reactant (R) to the product (P) states; at every
iteration the maximum energy point on the line is marked by a dot and performed a conjugate
minimization, obtaining a new configuration for the next line definitions.

http://spider.iwr.uni-heidelberg.de

The DHS method

Dewar, Healy and Stewart (DHS) have proposed a different method to compute the sad-

dle point. First, the reactant R and product P are joined by a line segment. Every cycle

has two main steps. In the first one the energy of both images is computed, and then the

lower energy image is pulled towards the other image, through the line segment previously

defined, in a percentage of 5%, obtaining a new image. Second, considering the new image

and the initial one at higher energy, the energy of the actual lower energy image is minimized

keeping the distance between the two fixed. This is repeated several times, reaching at the

end the saddle point.
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Figure 3.7: Schematic description of the Ridge algorithm. Starting with two images on each
side of the potential energy ridge, they are moved towards the saddle point; firstly finding
the maximum along the line from R to P, then defining two images, one on each side, x′0, x

′
1

which are displaced downhill along the gradient, obtaining x′′0, x
′′
1 and repeating this process

until convergence to the saddle point.

Methods for finding saddle points and minimum energy paths;
G.Henkelman, G. Jóhannesson and H. Jónsson

The method can locate the neighbouring region of the saddle point quite quickly, but

does not converge close to the saddle point efficiently.

It is necessary to use an optimization algorithm for the minimization of the position of
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the lower energy image.

Figure 3.8: Schematic description of the Dewar, Healy and Stewart (DHS) algorithm. Start-
ing with two images, R and P, a cycle consists on choosing the lower energy image and
pulling towards the higher energy one, for after relax the lower energy but keeping the
distance between the two new images. Eventually, the two images get close to the saddle
point.

Methods for finding saddle points and minimum energy paths;
G.Henkelman, G. Jóhannesson and H. Jónsson

String method

The idea behind the string method is that a continuous reaction pathway is optimized to

the MEP. The string method is very similar to the NEB. The initial pathway is defined by

a set of images connected by linear segments. The same tangent vectors and perpendicular

component of the true forces are computed, but there are not springs defined between every

pair of images, so to achieve images they are distributed along the path at every step.
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Chapter 4

NEB algorithm: our implementation

4.1 Introduction

The calculation of the activation Energy (e.g., the barrier height in a MEP, see figure 3.2)

is a fundamental task when facing problems related with the kinetics of chemical reactions

or diffusion events. As it was exposed in the previous chapter, there are several techniques

to tackle the problem and perform the calculation, and in this master thesis the (CI-)NEB

algorithm is the technique coded and used for computing the MEP on a model potential;

the code will be used in the near future for quantum calculations.

Starting from Classical Mechanics, for computing the energy rate of transition or just

the MEPs, it could be simulated the chemical or diffusion process attending to the dynam-

ics described by the Newton’s second law; but due to the actual computer capacity this is

impossible, because in some concrete case this requires the order of 105 years in the fastest

present day computer.

So the way to deal with this material problem is to obtain accurate estimates of transition

rates using the results obtained by the algorithms to compute saddle points or MEPs and

the Transition State Theory (TST).

The Nudged Elastic Band (NEB) and its modified version, the Climbing Image-NEB
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(CI-NEB) will be explain on detail.

4.2 The Nudged Elastic Band method

Figure 4.1: Here it is posed a general scheme of the NEB algorithm, where we can observe
the initial guessed band, NEB, as a linear interpolation between the minimum points Initial
and Final, the NEB force applied on each of the determined points in the band, called images
and denoted by i-1, i, i+1, and the Minimum Energy Path (MEP), which is the goal of the
NEB method.

The Journal of Chemical Physics 128, 134106(2008)

Considering a chemical system, the initial state is the reactant configuration, ~R, and the

final configuration or the product, ~P . They are known data, as the potential energy function

V should be. For many cases in Quantum Mechanics is not possible to calculate the PES

because of the very large number of degrees of freedom. The method defines a certain num-

ber N (typically 4− 20) of different molecular configurations (named images or replicas) in

between and connects them with springs, creating a path from the reactant to the product
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configuration. Since we have only a limited information on the PES for concrete cases, the

initial guess of such set of replicas can correspond to a linear interpolation between ~R and

~P . Then an optimization algorithm is called for every image in order to compute the force

acting on each of the images.

The image positions can be denoted by
[
~R0, ~R1, ~R2, ...., ~RN

]
, where ~R0 = ~R and ~RN = ~P .

Figure 4.2: Sketch of the initial band, constructed connecting the initial state, ~R, the final
state, ~P , and the images in between by a linear interpolation.

http://www.quantumwise.com

The original objective function proposed for the Elastic Band method [21] was

S(~R1, ~R2, ...., ~RN) =
N−1∑
i=1

V (~Ri) +
N∑
i=1

k

2
(~Ri − ~Ri−1)

2 (4.1)

which was minimized respect to ~R1, ~R2, ...., ~RN , but this entailed two problems (figure 4.3)

for the description of the MEP:

- The images tend to slide downhill, away from the saddle point representing the tran-

sition state. This can be reduced by using an appropriate stiffness for the spring

constants.

- The band tends to cut corners in regions where the PES is curved. [19]

To face these two problems the objective function to minimize has been developed until

becoming into the actual known NEB force.
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Figure 4.3: Potential Energy Surface (PES) where the ’corner-cutting’ effect is observed on
the left (the images do not pass through the MEP in the region with high curvature) consi,
and the ’down-sliding’ problem on the right, where the images tend to slide downhill, due to
the objective function 4.1 to minimize proposed for the original Elastic Band method. The
k represents the spring constant value.

The intermediate images ~R1, ~R2, ...., ~RN−1 are adjusted by a NEB force acting on each

image i, which consists of the parallel spring force and the perpendicular component of the

true force (e.g., the minus gradient of the potential V)[22]

~FNEB
i = ~F⊥i + ~F

S‖
i (4.2)

as it is shown in figure 4.1

In the NEB approach, special attention must be paid on avoiding all these images down-

sliding to the initial and to the final state, for this reason the method applies to each replica

a force perpendicular to the true force, being the true force the one following the energy

gradient:

~F⊥i = −∇V (~Ri)|⊥ = −∇V (~Ri) +∇V (~Ri) · ~̂τ i~̂τi (4.3)
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While for the corner-cutting problems the solution is to consider a complex parallel spring

force, which also ensures equal spacing of the images. This spring force will be defined as

~F
S‖
i = k

(
|~Ri+1 − ~Ri| − |~Ri − ~Ri−1|

)
~̂τ i (4.4)

where k is a parameter given by input.

In order to have a better description of the saddle point, a larger density of images close

to it could be desirable, such goal is achieved by a spring parameter k depending on the

energy values [18] of the images:

ki =

 kmax −∆k

(
Vmax − Vi
Vmax − Vref

)
if Vi > Vref

kmax −∆k if Vi < Vref

(4.5)

being

Vi = max {Vi, Vi−1};
Vmax = max {Vi};
Vref , kmax and ∆k are input parameters depending on the specific nature of the PES under

study.

Using the definition in equation 4.5, images with low energy are connected by a weaker

spring constant, whereas images with higher energy are connected by stronger spring forces,

being therefore closer each other and giving a more detailed description of the saddle point

region.

In the Climbing Image NEB (CI-NEB) method, after a few iterations, the spring force is

not applied to the highest energy image l, and it climbs to the saddle point via a reflection

of the true force (determined by the gradient of the potential energy V) along the tangent

τ̂i [22]

~FCI
l = ~Fl − 2~Fl · ~̂τi~̂τ i (4.6)



CHAPTER 4. NEB ALGORITHM: OUR IMPLEMENTATION 32

For the successful computation of all these forces, defining the vector ~̂τi is essential. ~̂τi is

the tangent vector to the path, referred to the image i.

4.3 Estimate of the tangent

The determination of the tangent to the path is crucial to get reliable an accurate results.

The original implementation of the NEB method considered as tangent to the i-th-replica

~Ri the following normalized line segment, estimated taking into account the adjacent images

~Ri−1 and ~Ri+1

~̂τi =
~Ri+1 − ~Ri−1

|~Ri+1 − ~Ri−1|
(4.7)

A slight improvement to ensure equal spacing between images even in regions with large

curvature, by using a simple bisection formula, is given by [19]:

~τi =
~Ri − ~Ri−1

|~Ri − ~Ri−1|
+

~Ri+1 − ~Ri

|~Ri+1 − ~Ri|
(4.8)

The vector ~τi is then normalized, ~̂τ i =
~τi
|~τi|

Anyway, these two estimates are not working in some cases, as when the energy of the

system changes rapidly along the path or covalent bonds are broken and formed in the case

of chemical reactions. In these problematic cases there are angles formed by ~Ri − ~Ri−1 and

~Ri+1 − ~Ri far from zero value, obtaining a parallel component of the force larger than the

perpendicular one and this creates kinks on the band (figure 4.4) for the next iterations

not allowing convergence to the MEP. To avoid such drawbacks a new tangent is defined,

involving the energy values of the image i and of the adjacent replicas [23]:
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Figure 4.4: The original nudged elastic band method as described by equations 4.7 and 4.8
can generate kinks along the path as illustrated here by the dashed line and perpetuate in
time, not converging to the Minimum Energy Path (continuous line).

Journal of Chemical Physics 113, 9978 (2000)

~τi =

{
~τ+i if Vi+1 > Vi > Vi−1

~τ−i if Vi+1 < Vi < Vi−1
(4.9)

with

~τ+i = ~Ri+1 − ~Ri

~τ−i = ~Ri − ~Ri−1

and if the image is at a minimum or at a maximum in energy
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~τi =

{
~τ+i ∆V max

i + ~τ−i ∆V min
i if Vi+1 > Vi−1

~τ+i ∆V min
i + ~τ−i ∆V max

i if Vi+1 < Vi−1
(4.10)

where

∆V max
i = max (| Vi+1 − Vi |, | Vi−1 − Vi |)

∆V min
i = min (| Vi+1 − Vi |, | Vi−1 − Vi |)

and the final tangent is the normalized one

~̂τ i =
~τi
|~τi|

.

4.4 Optimization of the force

Once the tangent at every image is determined, it is possible to define the parallel spring

force and the perpendicular component of the true force according to equation 4.2, the NEB

force responsible for the convergence to the MEP. For the spring force all the elements are

fully determined, but for computing the true force and applying the final NEB force a min-

imization method must be used, the same for all the replicas.

The minimization algorithm evaluates the energy and the gradient (true force) for each

image having as input the position of the image i in the configuration space of the system.

The NEB algorithm then, for each image, using the coordinates and energy of the two adja-

cent images, estimates the local tangent to the path, and the spring constant in the required

case. Thanks to these data the perpendicular component of the true force respect the tan-

gent and the parallel spring force can be computed, giving the NEB force. The NEB force

is applied to every image in the minimization algorithm, setting the new positions for the

following iteration in the NEB algorithm.

The process continues until absolute value of the maximum component of the NEB force

at each image is less than a fixed initial tolerance.
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|~FNEB
max | < ε (4.11)

When this tolerance is achieved all the optimization algorithms stop and the final result

corresponds to the converged MEP (figure 4.5).

Figure 4.5: Sketch with the initial and final states, R and P, connected by the initial band
as a dashed line and by the obtained MEP as a solid line.

http://www.quantumwise.com

4.5 Interpolation

The final step is to locate the saddle point and to plot the MEP profile, and for achieving

that it is necessary to interpolate between the final images of the converged elastic band. The

energy of the images and the force along the band provides the extra information that should

be used to interpolate. A cubic polynomial, ax3 + bx2 + cx+ d, is used for the interpolation

to each segment [~Ri, ~Ri+1], so setting each image in the segment as an unidimensional point,

~Ri ≡ 0 in the coordinates origin, and ~Ri+1 ≡ R∗ = |~Ri+1 − ~Ri|, we obtain the system
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d = Vi

aR3
∗ + bR2

∗ + cR∗ + d = Vi+1

c = −Fi

3aR2
∗ + 2bR∗ + c = −Fi+1

(4.12)

with the parameters given by

a =
2 (Vi − Vi+1)

R3
∗

+
Fi + Fi+1

R2
∗

b =
2Fi − Fi+1

3R∗
+

3 (Vi+1 − Vi)
R2
∗

c = −Fi

d = Vi

(4.13)

where Vi, Vi+1 are the energy values and Fi, Fi+1 are the value of the forces along the path

for images i and i+ 1 respectively.

It could be possible also to generate a quintic polynomial interpolation forcing the second

derivative to be continuous.

4.6 Implementation

After the detailed explanation about the Nudged Elastic Band method it is the time to

use it. We have developed a complex codification using some different scientific programming

codes, as Fortran, C and Python.

Algorithm

First of all we state, in a schematic way, the steps for the algorithm:

1. Set the desired initial and final atomic configurations, ~R and ~P .
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2. Construct an initial reaction pathway between ~R and ~P . The reaction configurations

can be denoted by
[
~R0, ~R1, ~R2, ...., ~RN

]
, where ~R0 = ~R and ~RN = ~P . They are chosen

by a linear interpolation between ~R and ~P or according to the user’s strategy.

3. Compute the energy V (~Ri), and the force acting on every image defined by the gradient

of the potential energy:

~Fi = −∇V (~Ri) .

4. Compute the tangent ~̂τ i to the pathway at each image.

5. Connect each pair of images with a spring, yielding a force on every image of

~F
S‖
i = k

(
|~Ri+1 − ~Ri| − |~Ri − ~Ri−1|

)
τ̂i .

6. Project out the component of the true force parallel to the tangent at every image i,

~F⊥i = −∇V (~Ri) +∇V (~Ri) · ~̂τ i~̂τi .

7. Minimize the energy for every image using the NEB force, ~FNEB
i = ~F⊥i + ~F

S‖
i , as

explained before, obtaining the new relaxed images. This step, as the third one, is

performed by an energy minimizer algorithm.

Then, steps from 3 to 7 will be repeated until getting a NEB force smaller than a

tolerance, according to the condition in equation 4.11.

8. Cubic polynomial piecewise interpolation of the final images.

Implementation characteristics

The main features of the implementation are:

• It is done in such a general way as to allow us using it with whatever optimization code

we want to run in steps 3 and 7. Just by including a few generalized lines of code, and

commenting the stop criterion on the minimization programs, you can use any Fortran

code minimizing the energy (quantum codes for instance) in our general machinery and

perform the NEB convergence independently of the minimizer employed and the level

of theory used. We have used a home-made code implementing the Steepest Descent
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algorithm.

• The skeleton of the NEB algorithm and the full steepest descent algorithm have been

implemented in Fortran language, while the part corresponding to communication be-

tween the main algorithm (the NEB one) and the optimization code, running for every

image, are provided by some C libraries, named libmsock, interfaced with the Fortran

source. The necessary files to run the algorithms have been created using Python codes

and bash scripts are eventually used for creating folders, like the coordinate files for

the image,) and running the programs.

• Everything is implemented based on a client/server model (figure 4.6), where the N−2

clients correspond to the minimizers optimizing the position of all the images (one-to-

one correspondence between image and client process) and the server role is played by

a Fortran code which calculates the NEB force (equation 4.2). It is a model one-to-all.

Figure 4.6: Scheme of the server-client model, where the server performs the general steps

of the NEB algorithm while each client runs a minimization code for an image.

Lines added to the minimization code, where we manage the sockets for communicating

each client and send the true force and energy value to the server in order to receive from

this one the NEB force to set the new position:
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! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
! NEB INSERTION − Opening s o c k e t Begin

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
sock fd=Cl i entSocket ( hostname , port )

IF ( sockfd <0) then

write (∗ ,∗ ) ’ Fa i l ed to open c l i e n t socket with port ’ , port

STOP

else

write (∗ ,∗ ) ’Open c l i e n t socket with port ’ , port

end i f

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
! NEB INSERTION − Opening s o c k e t End

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
! NEB INSERTION − Sending and r e c e i v i n g in format ion Begin

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
! Sending p o s i t i o n , f o r c e and energy to the neb a l gor i thm

write ( bu f f e r , ∗ ) R1

! w r i t e (∗ ,∗) ’ Sending coord inates ’ , R1 , ’ to server ’

e r r o r=sockPuts ( sockfd , b u f f e r //C NEW LINE)

i f ( e r ro r <0) STOP ” Server died ! ”

write ( bu f f e r , ∗ ) F1

! w r i t e (∗ ,∗) ’ Sending f o r c e s ’ , F1 , ’ to server ’

e r r o r=sockPuts ( sockfd , b u f f e r //C NEW LINE)

i f ( e r ro r <0) STOP ” Server died ! ”

write ( bu f f e r , ∗ ) V1
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! w r i t e (∗ ,∗) ’ Sending energy ’ , V1, ’ to server ’

e r r o r=sockPuts ( sockfd , b u f f e r //C NEW LINE)

i f ( e r ro r <0) STOP ” Server died ! ”

! Rece iv ing the NEB f o r c e i n t o the f o r c e v a r i a b l e

l ength=sockGets ( sockfd , bu f f e r , INT(LEN( b u f f e r ) , C INT ) )

i f ( length >0) then

read ( bu f f e r , ∗ ) F1

write (∗ ,∗ ) ’ Received NEB f o r c e ’ , F1 , ’ from s e r v e r ’

endif

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
! NEB INSERTION − Sending and r e c e i v i n g in format ion End

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
! NEB INSERTION − Clos ing s o c k e t Begin

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
e r r o r=CloseSocket ( sock fd )

write (∗ ,∗ ) ’ C l i en t communication c l o s e d ’

write (∗ ,∗ ) ’ ’

IF ( e r ro r <0) STOP ” Fa i l ed to c l o s e s e r v e r socket ”

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
! NEB INSERTION − Clos ing s o c k e t End

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

• For allowing the interprocess communication between server and clients we create sock-

ets. A socket provides a bidirectional communication endpoint for sending and receiv-

ing data with another socket. The socket communication can work on different hosts
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but our tests have been carried out on the same machine.

The header of the C library used for defining socket functions is the following:

/∗
∗ s o c k e t u t i l i t y r o u t i n e s

∗
∗ RCS:

∗ $Revis ion : 1 . 1 . 1 . 1 $

∗ $Date : 1997/05/26 22 :43 :03 $

∗
∗ D e s c r i p t i o n :

∗ most o f the f u n c t i o n s are taken ( in some cases modi f i ed ) from the

∗ I n t e r n e t Socket Programming FAQ example code .

∗
∗ Development His tory :

∗ who when why

∗ muquit@semcor . com 21−Mar−96 f i r s t cut

∗/

#ifndef SOCKHEAD H

#define SOCKHEAD H 1

/∗ s o c k e t f u n c t i n p r o t o t y p e s

∗/
int sockRead ( int , char ∗ , s i z e t ) ;

int sockWrite ( int , char ∗ , s i z e t ) ;

int sockWriteDouble ( int , double ∗ , s i z e t ) ;

int Cl i entSocket ( char ∗netaddress , u shor t port ) ;

int ServerSocket ( u short , int ) ;
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int getConnect ion ( int , u short , int ∗ , int ) ;

int makeConnection ( char ∗ , int , char ∗ ) ;

int sockGets ( int , char ∗ , s i z e t ) ;

int sockPuts ( int , char ∗ ) ;

int sockPutsDouble ( int , double ∗ ) ;

int getHostByName ( char ∗host found , char ∗ c h e c k f o r ) ;

int ge tPee r In fo ( int , char ∗ ,char ∗ , u shor t ∗ ) ;

int atoport ( char ∗ ,char ∗ ) ;

int i r e ad ( int , char ∗ , int ) ;

struct i n addr ∗atoaddr ( char ∗ ) ;

#endif /∗ SOCKHEAD H∗/

We already presented the sockets opening on each client, as the extra lines in the opti-

mization code, and here there are the lines opening the server sockets and how they are used

to send the NEB force to the clients and to receive information from the clients:

! Define , open and bind the s e r v e r s o c k e t s

do i =1,m !m i s the number o f images between R and P

port=5000+ i

WRITE(∗ ,∗ ) ” Connecting to port ” , port

Tot sockfd ( i ) = ServerSocket ( port , 2 c i n t )

WRITE(∗ ,∗ ) ” C l i en t connected ! ” , i

IF ( ToT sockfd ( i )<0) STOP ” Fa i l ed to open s e r v e r socket ”

end do

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
! Get t ing c o o r d i n a t e s from each c l i e n t ( image )
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do i =1,m

sock fd = Tot sockfd ( i )

! Get t ing c o o r d i n a t e s

l ength=sockGets ( sockfd , ToT buffer ( i ) , INT(LEN( ToT buffer ( i ) ) , C INT ) )

IF ( length <0) EXIT ! Here we w i l l keep the l a s t v a l u e s

IF ( length >0) read ( ToT buffer ( i ) ,∗ ) ToT R( i + 1 , : , : )

! Get t ing f o r c e s

l ength=sockGets ( sockfd , ToT buffer ( i ) , INT(LEN( ToT buffer ( i ) ) , C INT ) )

IF ( length <0) EXIT ! Here we w i l l keep the l a s t v a l u e s

IF ( length >0) read ( ToT buffer ( i ) ,∗ ) ToT F( i , : , : )

! w r i t e (∗ ,∗) ’F’ , i , Tot F ( i , : , : )

! Get t ing e n e r g i e s

l ength=sockGets ( sockfd , ToT buffer ( i ) , INT(LEN( ToT buffer ( i ) ) , C INT ) )

IF ( length <0) EXIT ! Here we w i l l keep the l a s t v a l u e s

IF ( length >0) read ( ToT buffer ( i ) ,∗ ) ToT E( i +1)

! w r i t e (∗ ,∗) ’E’ , i +1, Tot E ( i +1)

enddo

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
! Sending the NEB f o r c e to the c l i e n t s

do i =1,m

write ( ToT buffer ( i ) , ∗ ) F neb ( i , : , : )

! w r i t e (∗ ,∗) ’ Sending ’ , F neb ( i , : , : ) , ’ to c l i e n t ’ , i

e r r o r=sockPuts ( Tot sockfd ( i ) , ToT buffer ( i )//C NEW LINE)
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IF ( e r ro r <0) STOP ” Server died ! ”

enddo

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Flowchart and details

The server executes the main instructions. It is the software program creating a socket

for every client, controlling the NEB method flow and once the convergence is reached closing

all the sockets and stopping the program.

Every client corresponds to an image, and opens a different socket used already by the

server, in order to create the connection with the server. Each client runs the energy opti-

mizer algorithm (in the case of our proofs, the steepest descent) to get the force applied to

the reaction coordinates, and the energy value. No exit control is applied to the clients, since

the threshold for convergence has been chosen to be related to the NEB force: |~FNEB
max | < ε

A crucial point is to implement the communication between server and clients. Each

socket has a unique address that is the combination of an IP (Internet Protocol) address and

a TCP/IP (Transmission Control Protocol/Internet Protocol) port number and it is going to

be connected to the minimization code. Since all, server and clients are running in parallel

as independent processes which exchange information with the server, the sockets are used

to transfer the information passing from server to clients and vice versa.The server needs

true force and energy from every client at every iteration to compute the NEB force, while

the clients need the NEB force at every iteration of the steepest descent algorithm to set the

new position.
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Figure 4.7: The general flowchart of the NEB implementation.
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Chapter 5

Results

In this section we report the results obtained with the software we have developed,

showing the robustness of the NEB algorithm, how it works in extreme cases, with bad

initial guessing MEP or adding noise to the computed forces by the SD algorithm. Since

we want to visualize the results, we are not going to use the energy equations explained in

section 1.2 and section 1.3, instead we are going to use a model energy surface defined for

only two coordinates.

V (x, y) = cos (2πx) + sin (2πy) + (xy)2 (5.1)

(a) (b)

Figure 5.1: The used model potential energy surface, where (a) is a general overview of the

energy surface, defined in the interval [−10, 10]× [−10, 10], and in the image (b) appears a

detail of the energy function defined in [−1, 1]× [−1, 1]
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5.1 Results with no noise

We have performed several tests to debug and validate our approach, starting from a

very simple case with two equivalent minima (reactant and product) and only one saddle

point. Then we have moved to more interesting cases, in which the MEP is characterized by

an intermediate minimum between the given initial and final positions.

Comparison between initial and final energy paths
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(a) (b)

Figure 5.2: Two different examples are shown, one in (a), where there is a minimum position

located in the segment line fixed by the initial and the final positions, and other in (b), where

the three minimum positions are forming a right angle. The initial guess of the MEP is not

a linear interpolation but a more distorted curve.

Fixing from now on the parameter h = 0.005 for the Steepest Descent (equation 2.4),

which defines the size of the displacement.

The data in table 5.1 refer to the case of the three minima in line, reporting the conver-

gence properties (in terms of iterations) as a function of the NEB threshold ε (equation 4.11)

and the spring constant; and the plot in figure 5.3 sketches how the iterations vary depending
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on these two parameters. We can observe, in general, a faster convergence when using bigger

spring constants k.

Iterations

NEB threshold k = 0.1 k = 1 k = 10 k = 100

0.01 1095 740 195 45

0.005 1070 1070 231 48

0.001 7001 1905 314 56

0.0005 7001 2268 350 60

Table 5.1: Number of NEB iterations for the case of three minimum energy configurations

in line (case (a) in figure 5.2), considering different values for the stiffness of the spring

constants to define equation 4.4 and the NEB threshold ε appearing in equation 4.11.
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Figure 5.3: Plot of the iteration evolution as a function of the spring constant k for the case

of 3 minima located in line, (a) in figure 5.2, given different values for ε.
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The MEP resulting after running the NEB code is described in figures 5.4 and 5.5 for

the case (a) in figure 5.2.

Comparison between initial and final energy paths
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Figure 5.4: Projection of the initial pathway (dashed blue line) between the two minima,

and the MEP (orange line) obtained after running the NEB algorithm for the case (a) in

figure 5.2.



CHAPTER 5. RESULTS 50

-1.5 -1 -0.5  0  0.5-1-0.5 0 0.5 1

-2

-1

 0

 1

 2

 3

Energy

Comparison between initial and final energy paths
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Figure 5.5: Profile of the initial pathway (dashed blue line) between the two minima, and

the final MEP (orange line)for the case (a) in figure 5.2.

And analogously, the data for the case (b) in figure 5.2 are set in table 5.2 and in figure 5.6.

While the initial pathways and the resulting MEPs obtained with the NEB algorithm are

shown in figures 5.7 and 5.8.
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Iterations

NEB threshold k = 0.1 k = 1 k = 10 k = 100

0.01 254 1141 302 62

0.005 1256 1642 358 66

0.001 7001 2893 493 74

0.0005 7001 3460 551 78

Table 5.2: Number of NEB iterations for the case of three minimum energy configurations

forming a right angle (case (b) in figure 5.2), considering different values for the stiffness of the

spring constants to define equation 4.4 and the NEB threshold ε appearing in equation 4.11.
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Figure 5.6: Plot of the iteration evolution as a function of the spring constant k for the case

of 3 minima located in a right angle, (b) in figure 5.2, given different values for ε.
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Comparison between initial and final energy paths
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Figure 5.7: Projection of the initial pathway (dashed blue line) between the two minima,

and the MEP (orange line) result from the NEB implementation in the case (b) of figure 5.2.
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Figure 5.8: Profiles of the initial pathway (dashed blue line) between the two minima, and

the MEP (orange line) for the example (b) in figure 5.2.
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A clear convergence to the MEP is observed in both cases; the two saddle points and the

intermediate minimum are easily recognized; but there is no point going to coincide with

the saddle points, and the estimation of the potential barrier could be poorly accurate; one

could increase the number of replicas (with the risk of kinks in the band) or use an energy-

dependent k (equation 4.5), according the motivations given in section 4.2. A simple MEP

with a single saddle point is reported in figures 5.9 and 5.10, where the energy-dependent

k has been used; the three images are located near the saddle point, where the energy in-

creases, giving a better description of the barrier.

Comparison between initial and final energy paths
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Figure 5.9: Use of energy-dependent k (equation 4.5) for a MEP with a single saddle point.
Larger density of points close to it is shown.
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Figure 5.10: Potential energy profile with a initial distorted guess path in blue and the final
MEP in orange. Same data of figure 5.9.

5.2 Results with noise

Once the computational machinery has been validated on some test cases, we are now

ready to introduce a stochastic perturbation to the minimization procedure on the model

potential in order to mimic the behaviour of stochastic minimizers (for instance, Quantum

Monte Carlo methods).
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White noise

Very interesting results are those obtained inducing white noise on the computations

of the true forces (gradient of the energy function). The white noise can be defined as

a random function of t whose mean is zero and it is independent at different values of t.

Mathematically, we say

W (t) is white noise if

{
E [W (t)] = 0 ∀t
cov (W (t) ,W (s)) = E [W (t)W (s)] = δ (t− s) ∀t, s q t 6= s

and for simulating in the minimization code we have used a random numbers software gen-

erator based on a normal distribution with zero mean and unit variance.

Our aim is to study the effect of the noise on the convergence features of the NEB.

Considering the tests performed by applying the white noise (error) to the true force of our

model energy function

~Fnoise =


−∂V (x, y)

∂x

−∂V (x, y)

∂y

+ s× ~η (5.2)

where ~η is the random number vector for the noise and s =
β

Fmax

the normalized scaling

factor, we have also obtained successful results, what means convergence to the MEP in

cases of reasonable values for the noise, as is presented in table 5.3. The MEP resulting is

the same as in the potential not affected by noise.
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NEB iterations
s k = 0.1 k = 10
15 ∞ ∞
14 723 ∞
13 141 2129
12 202 2730
11 351 1494
10 177 410
7 48 410
5 48 99
3 47 99
1 26 47
0.1 32 46
0.01 30 45
0.001 30 45

No noise 30 45

Table 5.3: Number of NEB iterations for the case of true forces affected by noise, considering
the same spring constant k = 0.1 and k = 10, and varying the scaling factor, s, of white noise
applied. In the concrete case of our model energy function and the domain [−1, 1]× [−1, 1],
Fmax ' 8.3. We observe convergence even for s values of 10 and bigger, while in QMC
methods this value is about 10−2.



CHAPTER 5. RESULTS 58

Comparison between initial and final energy paths

Forces affected by noise
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Figure 5.11: Converged MEP with a force affected by random noise. Full convergence is
achieved.
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Chapter 6

Conclusions

In the theoretical study of chemical reactions, the most challenging quantities to estimate

are the energy barriers between minima, which corresponds to the energy of the transition

states, located in a saddle point of the potential energy surfaces. There exist several meth-

ods to face this problem and the NEB method is one of the most popular due to the low

computational cost, the convergence to the MEP instead of only the location of the saddle

point as final output, and the fact that it is well described in literature.

We have successfully implemented the NEB algorithm using a general and highly tech-

nological framework based on inter-process computer communications. The implementation

has been organized according to a server/client model using a socket system, and it has been

build up in such a general way that it has the capability to be easily interfaced with all

molecular modelling codes.

We have successfully performed tests in a model energy surface considering both simple

and multiple transition state pathways. As a second step we have applied our NEB software

to potential energy surfaces affected by stochastic errors in order to investigate the capability

of the algorithm to be used together with QMC methods. Our results have demonstrated

the robustness of the algorithm also in this case, using values of the signal/noise ratio that

are well above the ones typically found in QMC calculations. These preliminary results are

an encouraging step towards the calculation of reaction pathways by QMC methods.
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