An Algorithmic Approach to Stability Verification of Hybrid Systems: A Summary

Miriam García Soto

Joint work with Pavithra Prabhakar

Hybrid system

A dynamical system exhibiting a mixed **discrete** and **continuous** behavior.

Hybrid system

A dynamical system exhibiting a mixed **discrete** and **continuous** behavior.

Hybrid system

 $\mathcal{H} = (Q, X, \Sigma, \Delta)$

- Q finite set of control modes (discrete state space),
- $X = \mathbb{R}^n$ continuous state space,
- $\Sigma \subseteq Trans(Q, X)$ set of transitions and
- $\Delta \subseteq Traj(Q, X)$ set of trajectories.

Stability

- Stability is a fundamental **property** in **control** system design and captures **robustness** of the system with respect to initial states or inputs.
- A system is stable when small perturbations in the input just result in small perturbations of the eventual behaviours.
- Classical notions of stability:
 - Lyapunov stability
 - Asymptotic stability

Lyapunov stability

The equilibrium point 0 is Lyapunov stable if

 $\forall \epsilon > 0 \; \exists \delta = \delta(\epsilon) > 0 : ||\sigma(0)|| < \delta \Rightarrow ||\sigma(t)|| < \epsilon \; \; \forall t \geqslant 0$

Asymptotic stability

The equilibrium point 0 is asymptotic stable if it is Lyapunov stable and every execution converges to 0.

State of the art

- Existence of Lyapunov function assures stability.
- Lyapunov function computation:
 - Choose a template: $L(x) = ax^2 + bx + c$.
 - Look for coefficients a, b, c, such that L(x) holds some conditions.
 - If a, b, c do not exist, choose a new template.
- Template choice requires user ingenuity.
- Coefficient failure does not provide insights on the next template choice.

Motivation

- Automatization of stability analysis.
- Development of an abstraction refinement framework.

Algorithmic approach

Abstraction

Theoretical foundation

Continuous simulation

Let R be a continuous simulation from a hybrid system \mathcal{H} to a hybrid system $\mathcal{H}_{\mathcal{G}}$. Then:

- $\mathcal{H}_{\mathcal{G}}$ Lyapunov stable $\Rightarrow \mathcal{H}$ Lyapunov stable
- $\mathcal{H}_{\mathcal{G}}$ asymptotically stable $\Rightarrow \mathcal{H}$ asymptotically stable

Quantitative predicate abstraction

- Abstraction based on predicates.
- In addition, weight computation.

Partition

 $\mathcal{H} = (Q, X, \Sigma, \Delta)$ Hybrid system

 $\mathcal{P} = \{P_1, \cdots, P_k\}$ Polyhedral partition of X such that:

•
$$X = \bigcup_{i=1}^{k} P_i$$

•
$$Int(P_i) \cap Int(P_j) = \emptyset \ \forall i \neq j$$

Regions =
$$\mathcal{P}$$

 P_{13} P_{2}
 P_{13} P_{2}
 P_{13} P_{2}
 P_{13} P_{2}
 P_{13} P_{2}
 P_{14} P_{3}
 P_{14} P_{3}
 P_{14} P_{14} P_{14}
 P_{14} P_{14} P_{14} P_{14} P_{14} P_{14} P_{14} P_{14} P_{15} P_{15} P_{10} P_{10}

Quantitative predicate abstraction

- Modified predicate abstraction resulting in a finite weighted graph, \mathcal{G} .
- Nodes correspond to the regions of the partition, \mathcal{P} .
- Edges represent existence of an execution from one region to other and evolving through a common adjacent region.
- Weight on every edge corresponds to the maximum scaling of possible executions.

Reachability relation

 $(s_1, s_2) \in ReachRel_{P_1, P_2}$ if there exists an execution σ :

- $\sigma(0) = s_1 \in P_1$,
- $\exists T \ge 0$ with $\sigma(T) = s_2 \in P_2$ and
- $\exists P \in \mathcal{P}$ such that $\forall t \in (0,T), \sigma(t) \in P$.

Reachability relation - polyhedral dynamics

• Polyhedral hybrid system:

 $ReachRel_{P_1,P_2} = \{(s_1, s_2) : s_1 \in P_1, s_2 \in P_2, \exists t, \exists u \in dyn(P)\}$

for some P such that $s_2 = s_1 + ut$

Weight computation

$$W(P_1, P_2) = \sup_{(s_1, s_2) \in ReachRel_{P_1, P_2}} \frac{||s_2||}{||s_1||}$$

Model-checking

Model-checking

Let \mathcal{G} be a quantitative abstraction of a hybrid system \mathcal{H} .

- G1 There is no edge e in \mathcal{G} with infinite weight.
- G2 The product of the weights on every simple cycle π of \mathcal{G} is less than or equal to 1.
- G3 Every node in \mathcal{G} is labelled by "conv".
- G4 The product of the weights on every simple cycle π of \mathcal{G} is strictly less than 1.

Then:

- $\bullet~\mathcal{H}~\mathrm{is}$ Lyapunov stable if conditions G1 and G2 hold; and
- \mathcal{H} is asymptotically stable if conditions G3 and G4 hold.

Model-checking

AVERIST

Software tool

- Quantitative predicate abstraction for polyhedral switched systems.
- Stability analysis based on the weighted graph.
- Implemented in Python.
- Parma Polyhedra Library (PPL) to manipulate polyhedral sets.
- GLPK solver to compute the weights.
- NetworkX Python package to define and analyse graphs.

http://software.imdea.org/projects/averist/index.html

Conclusions

- Summary of an algorithmic approach for stability verification.
- Future directions:
 - Extension to linear and nonlinear dynamics.
 - Compositional techniques for stability analysis.

Thank you!