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Hybrid system

A dynamical system exhibiting a mixed discrete and continuous behavior.
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Hybrid system

• Q finite set of control modes (discrete state space),

• X = Rn
continuous state space,

• ⌃ ✓ Trans(Q,X) set of transitions and

• � ✓ Traj(Q,X) set of trajectories.
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Stability

• Stability is a fundamental property in control system design and captures

robustness of the system with respect to initial states or inputs.

• A system is stable when small perturbations in the input just result in

small perturbations of the eventual behaviours.

• Classical notions of stability:

– Lyapunov stability

– Asymptotic stability



Lyapunov stability
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The equilibrium point 0 is Lyapunov stable if
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Asymptotic stability
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The equilibrium point 0 is asymptotic stable if it is

Lyapunov stable and every execution converges to 0.



State of the art

• Existence of Lyapunov function assures stability.

• Lyapunov function computation:

– Choose a template: L(x) = ax

2
+ bx+ c.

– Look for coe�cients a, b, c, such that L(x) holds some conditions.

– If a, b, c do not exist, choose a new template.

• Template choice requires user ingenuity.

• Coe�cient failure does not provide insights on the next template choice.



Motivation

• Automatization of stability analysis.

• Development of an abstraction refinement framework.



Algorithmic approach

Abstract

Model-Check Yes

Validate

R
ef
in
e

H

Stable

No

Yes UnstableNo

G



Abstraction
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Theoretical foundation
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Continuous simulation

Let R be a continuous simulation from a hybrid system H to a hybrid system

HG . Then:

• HG Lyapunov stable ) H Lyapunov stable

• HG asymptotically stable ) H asymptotically stable



Quantitative predicate abstraction

• Abstraction based on predicates.

• In addition, weight computation.



Partition

P = {P1, · · · , Pk} Polyhedral partition of X such that:

• X =

kS
i=1

Pi

• Int(Pi) \ Int(Pj) = ; 8i 6= j

H = (Q,X,⌃,�) Hybrid system
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Quantitative predicate abstraction

• Modified predicate abstraction resulting in a finite weighted graph, G.

• Nodes correspond to the regions of the partition, P.

• Edges represent existence of an execution from one region to other and

evolving through a common adjacent region.

• Weight on every edge corresponds to the maximum scaling of possible ex-

ecutions.



Predicate abstraction: constant derivative
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Predicate abstraction: constant derivative
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Predicate abstraction: constant derivative
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Predicate abstraction: constant derivative
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Reachability relation

(s1, s2) 2 ReachRelP1,P2 if there exists an execution �:

• �(0) = s1 2 P1,

• 9T > 0 with �(T ) = s2 2 P2 and

• 9P 2 P such that 8t 2 (0, T ), �(t) 2 P .



Reachability relation - polyhedral dynamics

ReachRelP1,P2 = {(s1, s2) : s1 2 P1, s2 2 P2, 9t, 9u 2 dyn(P )

for some P such that s2 = s1 + ut}

• Polyhedral hybrid system:

P1

P2

dyn(P )

P

ReachP1,P2(s1)

s1



Weight computation

W (P1, P2) = sup
(s1,s2)2ReachRelP1,P2

||s2||
||s1||



Model-checking

Abstract

Model-Check Yes

Validate

R
ef
in
e

H

Stable

No

Yes UnstableNo

G



Model-checking

Let G be a quantitative abstraction of a hybrid system H.

G1 There is no edge e in G with infinite weight.

G2 The product of the weights on every simple cycle ⇡ of G is less than or

equal to 1.

G3 Every node in G is labelled by “conv”.

G4 The product of the weights on every simple cycle ⇡ of G is strictly less

than 1.

Then:

• H is Lyapunov stable if conditions G1 and G2 hold; and

• H is asymptotically stable if conditions G3 and G4 hold.



Model-checking
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AVERIST

Software tool

• Quantitative predicate abstraction for polyhedral switched systems.

• Stability analysis based on the weighted graph.

• Implemented in Python.

• Parma Polyhedra Library (PPL) to manipulate polyhedral sets.

• GLPK solver to compute the weights.

• NetworkX Python package to define and analyse graphs.

http://software.imdea.org/projects/averist/index.html



Conclusions

• Summary of an algorithmic approach for stability verification.

• Future directions:

– Extension to linear and nonlinear dynamics.

– Compositional techniques for stability analysis.



Thank you!


