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AVERIST

* Formal stability verification of hybrid systems

+ Classes considered:

+ polyhedral hybrid systems (PHS)
+ linear hybrid systems (LHS)

* Techniques implemented:

* Counterexample Guided Abstraction Refinement (CEGAR) for state-space

reduction

+ Hybridization for dynamics simplification



Input & Stability property

var:

loc:

loc:

loc:

loc:

X,¥5

location: quadl, quad2, quad3, quad4;

quadl;
inv: x>=0 AND y>=0;
dyn: dx==y AND dy==-4*x;
guards:
when y==0 goto quad4;

quad2;
inv: x<=0 AND y>=0;
dyn: dx==10xy AND dy==-x;
guards:
when x==0 goto quadl;

quad3;
inv: x<=0 AND y<=0;
dyn: dx==y AND dy==-4%*x;
guards:
when y==0 goto quad2;

quad4;
inv: x>=0 AND y<=0;
dyn: dx==10*y AND dy==-x;
guards:
when x==0 goto quad3;

* A system is Lyapunov stable with respect to the
equilibrium point 0 if for every & > 0 there
exists 0 > 0 such that for every execution o
starting from Bs(0) , o(t) € B:(0), for all time t.
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Stability verification

State-of-the-art: Lyapunov’s second method

Template based search

* Choose a template
* Encode Lyapunov function conditions as constraints

* Solve using sum-of-squares programming tools

CEGAR approach

* Constructs an abstract weighted graph from the hybrid system and a state
space partition

* Systematically iterates over the abstract systems
* Returns a counterexample in the case that the abstraction fails

* The counterexample can be used to guide the choice of the next abstraction




AVERIST diagram
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[MODEL-CHECKINGj——b Stable

Abstract counterexamplel

[ VALIDATION j——» Unstable

Abstract counterexamplel
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Hybridization

Linear hybrid system Polyhedral hybrid system



Hybridization
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Hybridization
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Linear hybrid system Polyhedral hybrid system

P is defined as a convex polyhedron using PPL.




Hybridization
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Linear hybrid system Polyhedral hybrid system

P is defined as a convex polyhedron using PPL.

Theorem - Hybridization
o R

If the hybridized polyhedral hybrid system is Lyapunov stable then the original

linear hybrid system is Lyapunov stable.
\_ J




Quantitative Predicate Abstraction

o
uQ/ Ybl
3 J1
A
Ja

Concrete system

Facets F = {f1, fo, f3, fa}
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An edge between facets indicates the existence of an execution.
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Quantitative Predicate Abstraction
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Concrete system Abstract system

Facets F = {f1, f2, f3, f1}

An edge between facets indicates the existence of an execution.

Weights capture information about distance to the equilibrium point along the executions.
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Quantitative Predicate Abstraction

Concrete system Abstract system
1 1 2
Facets F = {f1, f2, f3, fa} W(w):2-§-§-1:§<1

An edge between facets indicates the existence of an execution.

Weights capture information about distance to the equilibrium point along the executions.




Model-checking

Theorem - Model-checking
4 N

A polyhedral hybrid system is Lyapunov stable if

* the abstract weighted graph has no edges with infinite weights, and

* no cycles with product of edge weights greater than 1
g J

Abstract system Abstract system
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There is a cycle, 11, with weight greater
than 1 => 1t 1s an abstract counterexample
=> Validation

Every cycle has weight smaller than 1
=> Hybrid system is stable => Stop




Model-checking

Theorem - Model-checking
4 N

A polyhedral hybrid system is Lyapunov stable if

* the abstract weighted graph has no edges with infinite weights, and

* no cycles with product of edge weights greater than 1
g J

Abstract system Abstract system

1) 1z

- e A

1 1

There is a cycle, 11, with weight greater
than 1 => 1t 1s an abstract counterexample
=> Validation

Every cycle has weight smaller than 1
=> Hybrid system is stable => Stop

Adaptation of Bellman-Ford algorithm included in NetworkX package.




+ Abstract counterexample t=f;—f, —f3— ... — f;

* Validation checks if 7 is valid, that is, corresponds to an infinite execution in

the hybrid system which follows the edges and weights of 7 and diverges

Theorem - Validation

4 A
A counterexample f; — fr — f3 — ... —> f; is valid

—

dJa>1,Ax1E1, ..., Xk E fi, Xx+1 € f1

X1—™> X2 ——™> X3 — ... = Xk — Xk+1, Xk+1 = XX1




+ Abstract counterexample t=f;—f, —f3— ... — f;

* Validation checks if 7 is valid, that is, corresponds to an infinite execution in

the hybrid system which follows the edges and weights of 7 and diverges

Theorem - Validation

4 A
A counterexample f; — fr — f3 — ... —> f; is valid

—

dJa>1,Ax1E1, ..., Xk E fi, Xx+1 € f1

X1—™> X2 ——™> X3 — ... = Xk — Xk+1, Xk+1 = XX1

Encoded as an SMT formula and solved with Z3.
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Post and pre-rechability computations by means of Parma Polyhedral Library (PPL).
Separation predicate candidates are the linear constraints of the polyhedra to be separated.




Running AVERIST

Hybrid Automaton type
linear j

Given predicates

none j

Uniform predicates grid ratio

0

Predicates from automaton

none j

Maximum CEGAR iterations

2

CEGAR refinement type

selected j

CEGAR predicates grid ratio
0

Optimization solver

GLPK solver j

Hybrid automaton
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var: Xx,y;

location: quadl, quad2, quad3, quad4;

loc: quadl;
inv: x>=0 AND y>=0;
dyn: dx==y AND dy==-4%x;
guards:
.~ when y==0 goto quad4;

loc: quadZ;
inv: x<=0 AND y>=0;
dyn: dx==10*y AND dy==-Xx;
guards:
' when x==0 goto quadl,;

loc: quad3;
inv: x<=0 AND y<=0;
dyn: dx==y AND dy==-4%*x;
guards:
' when y==0 goto quadZ;

loc: quad4;
inv: x>=0 AND y<=0;
dyn: dx==10*y AND dy==-Xx;
guards:
5 when x==0 goto quad3;


http://software.imdea.org/projects/averist/index.html

AVERIS'T details

* Implemented in Python

* Parma Polyhedra Library (PPL) to manipulate polyhedral sets
* GLPK solver to compute the weights

* NetworkX Python package to define and analyse graphs

* Run through the mathematical software system sage

http://software.imdea.org/projects/averist/index.html


http://software.imdea.org/projects/averist/index.html

Experimental Comparison

AVERIST STABHYLI
Dimension/ Regions Runtime Proved Degree LF found Runtime
name Stabﬂity
2D AS1 129 31 Yes 6 Yes 8
S541 9 <1 Yes 8 - 452 . v .
* Averist proves stability in many more
SS8 1 17 <1 Yes 6 — 443
e | = - " p - — cases than Stabhyli
Sl I A N N ° _ - + Stabhyli can handle nonlinear systems
SS4 4 771 484 Yes 2 Yes 75
558 4 = 470 Yes 5 Yes 15 + Averist is more robust to numerical issues
SS16 4 771 568 Yo 2 Yo 138 . . .
= = + Underlying algorithms are highly
4D AS7 81 625 Yes 2 - 12 .
parallelizable
SS4 7 81 119 Yes 2 — 101
SS8 7 153 234 Yes 2 - 1071
SS16 7 297 533 Yes 2 — 339
AS9 — out No 4 Yes 34
SS4 9 81 125 Yes 4 — 105
SS8 9 153 247 Yes 2 - 16




* Averist implements an algorithmic approach for stability verification of linear

and polyhedral hybrid systems
* Alternate approach to template based search
* Can sometimes conclude instability and return counterexamples
* Fully automated and parallelizable
* Future work:
* Develop heuristics for scalability

* Extend to nonlinear system
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