AVERIST

Algorithmic Verifier for Stability of Linear Hybrid Systems

Miriam García Soto and Pavithra Prabhakar

HSCC, April 2018

AVERIST

- * Formal **stability verification** of hybrid systems
- * Classes considered:
 - polyhedral hybrid systems (PHS)
 - * linear hybrid systems (LHS)
- * Techniques implemented:
 - * Counterexample Guided Abstraction Refinement (**CEGAR**) for state-space reduction
 - * Hybridization for dynamics simplification

```
var: x,y;
location: quad1, quad2, quad3, quad4;
loc: quad1;
        inv: x \ge 0 AND y \ge 0;
        dyn: dx==y AND dy==-4*x;
         guards:
                 when y==0 goto quad4;
loc: quad2;
        inv: x \le 0 AND y \ge 0;
        dyn: dx==10*y AND dy==-x;
         guards:
                 when x==0 goto quad1;
loc: quad3;
        inv: x \le 0 AND y \le 0;
        dyn: dx==y AND dy==-4*x;
         guards:
                 when y==0 goto quad2;
loc: quad4;
        inv: x \ge 0 AND y \le 0;
        dyn: dx==10*y AND dy==-x;
         guards:
                 when x==0 goto quad3;
```

```
var: x,y;
location: quad1, quad2, quad3, quad4;
loc: quad1;
         inv: x \ge 0 AND y \ge 0;
         dyn: dx==y AND dy==-4*x;
         guards:
                 when y==0 goto quad4;
loc: quad2;
         inv: x \le 0 AND y \ge 0;
         dyn: dx==10*y AND dy==-x;
         guards:
                 when x==0 goto quad1;
loc: quad3;
         inv: x \le 0 AND y \le 0;
         dyn: dx==y AND dy==-4*x;
         guards:
                 when y==0 goto quad2;
loc: quad4;
         inv: x \ge 0 AND y \le 0;
         dyn: dx==10*y AND dy==-x;
         guards:
                 when x==0 goto quad3;
```



```
var: x,y;
location: quad1, quad2, quad3, quad4;
loc: quad1;
         inv: x \ge 0 AND y \ge 0;
         dyn: dx==y AND dy==-4*x;
         guards:
                 when y==0 goto quad4;
loc: quad2;
         inv: x \le 0 AND y \ge 0;
         dyn: dx==10*y AND dy==-x;
         guards:
                 when x==0 goto quad1;
loc: quad3;
         inv: x \le 0 AND y \le 0;
         dyn: dx==y AND dy==-4*x;
         guards:
                 when y==0 goto quad2;
loc: quad4;
         inv: x \ge 0 AND y \le 0;
         dyn: dx==10*y AND dy==-x;
         guards:
                 when x==0 goto quad3;
```



```
var: x,y;
location: quad1, quad2, quad3, quad4;
loc: quad1;
         inv: x \ge 0 AND y \ge 0;
         dyn: dx==y AND dy==-4*x;
         guards:
                 when y==0 goto quad4;
loc: quad2;
         inv: x \le 0 AND y \ge 0;
         dyn: dx==10*y AND dy==-x;
         guards:
                 when x==0 goto quad1;
loc: quad3;
         inv: x \le 0 AND y \le 0;
         dyn: dx==y AND dy==-4*x;
         guards:
                 when y==0 goto quad2;
loc: quad4;
         inv: x \ge 0 AND y \le 0;
         dyn: dx==10*y AND dy==-x;
         guards:
                 when x==0 goto quad3;
```


Stability verification

State-of-the-art: Lyapunov's second method

Template based search

- Choose a template
- Encode Lyapunov function conditions as constraints
- * Solve using **sum-of-squares** programming tools

CEGAR approach

- * Constructs an **abstract weighted graph** from the hybrid system and a state space partition
- Systematically iterates over the abstract systems
- * Returns a counterexample in the case that the abstraction fails
- * The **counterexample** can be used to **guide** the choice of the **next abstraction**

AVERIST diagram

Linear hybrid system

Polyhedral hybrid system

Linear hybrid system

Polyhedral hybrid system

Linear hybrid system

Polyhedral hybrid system

Linear hybrid system

Polyhedral hybrid system

P is defined as a convex polyhedron using PPL.

Linear hybrid system

Polyhedral hybrid system

P is defined as a convex polyhedron using PPL.

Theorem - Hybridization

If the hybridized polyhedral hybrid system is Lyapunov stable then the original linear hybrid system is Lyapunov stable.

Concrete system

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Concrete system

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Concrete system

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Abstract system

Concrete system

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Abstract system

Concrete system

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Abstract system

An edge between facets indicates the existence of an execution.

Concrete system

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Abstract system

An edge between facets indicates the existence of an execution.

Concrete system

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Abstract system

An edge between facets indicates the existence of an execution.

Weights capture information about distance to the equilibrium point along the executions.

Concrete system

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Abstract system

An edge between facets indicates the existence of an execution.

Weights capture information about distance to the equilibrium point along the executions.

Concrete system

Facets
$$\mathcal{F} = \{f_1, f_2, f_3, f_4\}$$

Abstract system

$$W(\pi) = 2 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot 1 = \frac{2}{9} < 1$$

An edge between facets indicates the existence of an execution.

Weights capture information about distance to the equilibrium point along the executions.

Model-checking

Theorem - Model-checking

A polyhedral hybrid system is Lyapunov stable if

- * the abstract weighted graph has no edges with infinite weights, and
- * no cycles with product of edge weights greater than 1

Abstract system

Every cycle has weight smaller than 1 => Hybrid system is stable => Stop

Abstract system

There is a cycle, π , with weight greater than $1 => \pi$ is an abstract counterexample => Validation

Model-checking

Theorem - Model-checking

A polyhedral hybrid system is Lyapunov stable if

- * the abstract weighted graph has no edges with infinite weights, and
- * no cycles with product of edge weights greater than 1

Abstract system

Every cycle has weight smaller than 1 => Hybrid system is stable => Stop

Abstract system

There is a cycle, π , with weight greater than $1 => \pi$ is an abstract counterexample => Validation

Adaptation of **Bellman-Ford algorithm** included in **NetworkX** package.

Validation

- * Abstract counterexample $\pi = f_1 \longrightarrow f_2 \longrightarrow f_3 \longrightarrow ... \longrightarrow f_1$
- * Validation checks if π is valid, that is, corresponds to an infinite execution in the hybrid system which follows the edges and weights of π and diverges

Theorem - Validation

A counterexample
$$f_1 \longrightarrow f_2 \longrightarrow f_3 \longrightarrow ... \longrightarrow f_1$$
 is valid \Leftrightarrow

$$\exists \alpha > 1, \exists x_1 \in f_1, ..., x_k \in f_k, x_{k+1} \in f_1$$

$$x_1 \longrightarrow x_2 \longrightarrow x_3 \longrightarrow ... \longrightarrow x_k \longrightarrow x_{k+1}, x_{k+1} = \alpha x_1$$

Validation

- * Abstract counterexample $\pi = f_1 \longrightarrow f_2 \longrightarrow f_3 \longrightarrow ... \longrightarrow f_1$
- * **Validation** checks if π is valid, that is, corresponds to an infinite execution in the hybrid system which follows the edges and weights of π and diverges

Theorem - Validation

A counterexample
$$f_1 \longrightarrow f_2 \longrightarrow f_3 \longrightarrow ... \longrightarrow f_1$$
 is valid
 \Leftrightarrow

$$\exists \alpha > 1, \exists x_1 \in f_1, ..., x_k \in f_k, x_{k+1} \in f_1$$

$$x_1 \longrightarrow x_2 \longrightarrow x_3 \longrightarrow ... \longrightarrow x_k \longrightarrow x_{k+1}, x_{k+1} = \alpha x_1$$

Encoded as an SMT formula and solved with Z3.

Spurious counterexample

Separation predicate

Spurious counterexample

Separation predicate

Post and **pre-rechability** computations by means of Parma Polyhedral Library (**PPL**). **Separation predicate** candidates are the linear constraints of the polyhedra to be separated.

Running AVERIST

Hybrid Automaton type linear **Given predicates** none Uniform predicates grid ratio 0 Predicates from automaton none **Maximum CEGAR iterations** 2 **CEGAR** refinement type selected **CEGAR** predicates grid ratio 0 **Optimization solver GLPK** solver

Hybrid automaton

Send

Clear

```
1 var: x,y;
   location: quad1, quad2, quad3, quad4;
    loc: quad1;
        inv: x \ge 0 AND y \ge 0;
 5
        dyn: dx==y AND dy==-4*x;
 6
         quards:
 8
             when y==0 goto quad4;
 9
10 loc: quad2;
        inv: x \le 0 AND y \ge 0;
11
        dyn: dx==10*y AND dy==-x;
12
13
         auards:
             when x==0 goto quad1;
14
15
16
   loc: quad3;
        inv: x \le 0 AND y \le 0;
17
        dyn: dx==y AND dy==-4*x;
18
19
         auards:
20
             when y==0 goto quad2;
21
22
    loc: quad4;
23
        inv: x \ge 0 AND y \le 0;
24
        dyn: dx==10*y AND dy==-x;
25
         quards:
26
             when x==0 goto quad3;
```

AVERIST details

- * Implemented in **Python**
- * Parma Polyhedra Library (PPL) to manipulate polyhedral sets
- * **GLPK** solver to compute the weights
- * NetworkX Python package to define and analyse graphs
- * Run through the mathematical software system **sage**

http://software.imdea.org/projects/averist/index.html

Experimental Comparison

		AVERIST			STABHYLI		
Dimension/ name		Regions	Runtime	Proved Stability	Degree	LF found	Runtime
2D	AS1	129	31	Yes	6	Yes	8
	SS4 1	9	<1	Yes	8	_	452
	SS8 1	17	<1	Yes	6	_	443
	SS16 1	33	1	Yes	4	_	177
3D	AS 4	147	194	Yes	6	-	410
	SS4 4	771	484	Yes	2	Yes	75
	SS8 4	771	470	Yes	2	Yes	15
	SS16 4	771	568	Yes	2	Yes	138
4D	AS 7	81	625	Yes	2	_	12
	SS4 7	81	119	Yes	2	-	101
	SS8 7	153	234	Yes	2	_	1071
	SS16 7	297	533	Yes	2	-	339
	AS 9	-	out	No	4	Yes	34
	SS4 9	81	125	Yes	4	-	105
	SS8 9	153	247	Yes	2	_	16

- Averist proves stability in many more cases than Stabhyli
- Stabhyli can handle nonlinear systems
- Averist is more robust to numerical issues
- Underlying algorithms are highly parallelizable

Conclusion

- * Averist implements an algorithmic approach for stability verification of linear and polyhedral hybrid systems
- * Alternate approach to template based search
- * Can sometimes conclude instability and return counterexamples
- * Fully automated and parallelizable
- * Future work:
 - Develop heuristics for scalability
 - * Extend to nonlinear system

Questions?

http://software.imdea.org/projects/averist/index.html