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Switching logic synthesis
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Given a set of dynamics and a partition, assign dynamics to
each facet such that the resulting switched system is stable.




Switched system

Family of dynamical systems
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Switched system S, = (P, {9p}per, @)
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Stabilization problem

Given a system S and a set of valid facets F,
find a switching strategy o : = — P, such
that the switched system S, is stable.

A system is Lyapunov stable with respect to 0 if for every € > 0 there exists
6 > 0 such that every execution x starting from Bs(0) implies x € B.(0).




Overview

[1 Abstract a game graph G from a family of dynamics § and a set
of valid facets F.

[1 Induce an energy game graph G°® from G.
[1 Compute an energy winning strategy o from the game graph G°.

[1 Extract a stabilizing switching strategy o from o.
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Abstract Game Graph Construction



(Quantitative predicate abstraction

S=({1,2},{A;1,A2}) Quantitative predicate abstraction
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Auxihary cycles

divergence
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Strategy Synthesis



GGame graph

— h ~_ Game graph is a weighted graph G=(V,E,W)
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A strategy is a function o : V*V; — Vi, where V* is the set of finite
sequences over V with zero or more elements.
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Strategy Example
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Strategy Example

S=({1,2},{A1, A2})
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(No cycles with weight greater than 1 implies stability.) /3
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Soundness of abstraction

A strategy o is a winning bounded strategy if there exists M € Z
such that for every play 7 determined by o, W(7) < M.

Theorem - stabilizable switching strategy
4 )

A winning bounded strategy for the game graph G(S, F),
induces a strategy which solves the stabilization problem
for the system & and the facets F.




Energy game

A strategy o is a winning energy strategy if there exists
Ce N such that for every play 7 = vivs ... determined by

g, C—|— Zg:1W(Ui,Ui+1) P> 0.

Theorem - energy strategy [Brim et al. FMSD’11]

-

Given a game graph (V,E;W) where W: E — Z, if there
exists a winning energy strategy, then there exists a memoryless
winning energy strategy. Further, there is an algorithm
which returns the memoryless winning energy strategy.
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Energy game

Modification of G(S,F) to an energy game graph

[1 Reduce multiplicative game graph to addition game graph.

[1 Weights are required to be integers.

[1 Winning energy strategy provides plays lower bounded by a value.

Bounded game graph

(G = (VEW) A
W(e) = o L

LCM¢ := least common multiple {b. : e € F'} y

Theorem - bounded strategy

Energy game graph

-~

.

G¢ = (V,E,W¢)

W€ = - LCM¢g - W

~

)

-

o is a winning energy strategy for G° if and only if
o is a winning bounded strategy for G.
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Reduction to energy game
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Reduction to energy game
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Conclusion

[1 An abstraction technique and game based approach for synthesizing
a switching logic for stabilization.

[1 Our approach can be combined with temporal logic properties to
obtain stable controllers which satisty the temporal logic formulas.
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Thank you

19



