# Formal Synthesis of Stabilizing Controllers for Switched Systems

Pavithra Prabhakar & <u>Miriam García Soto</u> Kansas State University & IMDEA Software Institute

HSCC'17

Pittsburgh, PA, USA





### Switching logic synthesis

Dynamics



Partition



Given a set of dynamics and a partition, assign dynamics to each facet such that the resulting switched system is stable.

### Switched system

#### Family of dynamical systems

$$S = (\mathcal{P}, \{g_p\}_{p \in \mathcal{P}})$$

$$\dot{x}(t) \in g_p(x(t)), \quad p \in \mathcal{P}$$

$$g_p : \mathbb{R}^n \to 2^{\mathbb{R}^n}$$

#### Switching strategy

$$\alpha: \mathcal{F}^+ \to \mathcal{P}$$
  
 $f_i, f_j, \dots, f_l \mapsto p$ 

#### Partition - finite set of valid facets

$$\mathcal{R} = \{\Omega_1, \Omega_2, \dots, \Omega_k\}$$
 closed convex polyhedra

$$\square \mathbb{R}^n = \cup_{\Omega \in \mathcal{R}} \Omega$$

 $\square \mathring{\Omega}_i \neq \emptyset \text{ for every } i$ 

$$\square \mathring{\Omega}_i \cap \mathring{\Omega}_j = \emptyset \text{ for every } i \neq j$$

$$\mathcal{F} = \{f_1, f_2, \dots, f_k\}$$



maximal closed convex subsets of boundary of  $\Omega$ 's

Switched system  $S_{\alpha} = (\mathcal{P}, \{g_p\}_{p \in \mathcal{P}}, \alpha)$ 



### Stabilization problem

Given a system S and a set of valid facets F, find a switching strategy  $\alpha : F^+ \to P$ , such that the switched system  $S_{\alpha}$  is stable.

A system is Lyapunov stable with respect to 0 if for every  $\varepsilon > 0$  there exists  $\delta > 0$  such that every execution x starting from  $B_{\delta}(0)$  implies  $x \in B_{\varepsilon}(0)$ .



### Overview

- $\square$  Abstract a game graph G from a family of dynamics  $\mathcal{S}$  and a set of valid facets  $\mathcal{F}$ .
- $\square$  Induce an energy game graph  $G^e$  from G.
- $\square$  Compute an energy winning strategy  $\sigma$  from the game graph  $G^e$ .
- $\square$  Extract a stabilizing switching strategy  $\alpha$  from  $\sigma$ .

#### **SWITCHING STRATEGY SYNTHESIS**



### Abstract Game Graph Construction

### Quantitative predicate abstraction





$$\mathcal{F} = \{f_1, f_2, f_3, f_4\}$$



#### Quantitative predicate abstraction



$$W((p, f_i), f_j) = \sup\{\frac{||x_j||}{||x_i||} : x_i \in f_i, x_j \in f_j, x_i \xrightarrow{p} x_j\}$$

 $\Omega_{ij}$  common region of  $f_i$  and  $f_j$ 

## Auxiliary cycles

#### divergence



#### convergence or containment



# Strategy Synthesis

### Game graph



Game graph is a weighted graph G=(V,E,W)

- $\square V = V_0 \cup V_1$
- $\square V_0 \cap V_1 = \emptyset$
- $\square E \subseteq (V_0 \times V_1) \cup (V_1 \times V_0)$
- $\square W: E \to \mathbb{Q}$
- ☐ Every node has a succesor

A strategy is a function  $\sigma: V^*V_0 \to V_1$ , where  $V^*$  is the set of finite sequences over V with zero or more elements.

### Strategy Example





Weight of the cycle is  $1/2 \cdot 5/2 \cdot 1/2 \cdot 5/2 > 1$ 

### Strategy Example



 $S = (\{1, 2\}, \{A_1, A_2\})$ 

 $\dot{x} = A_1 x$ 

Weight of the cycle is  $1/2 \cdot 3/10 \cdot 1/2 \cdot 3/10 < 1$ 



 $\dot{x} = A_2 x$ 

No cycles with weight greater than 1 implies stability.

### Soundness of abstraction

A strategy  $\sigma$  is a winning bounded strategy if there exists  $M \in \mathbb{Z}$  such that for every play  $\tau$  determined by  $\sigma$ ,  $W(\tau) \leq M$ .

#### Theorem - stabilizable switching strategy

A winning bounded strategy for the game graph  $G(S, \mathcal{F})$ , induces a strategy which solves the stabilization problem for the system S and the facets F.

### Energy game

A strategy  $\sigma$  is a winning energy strategy if there exists  $C \in \mathbb{N}$  such that for every play  $\tau = v_1 v_2 \dots$  determined by  $\sigma$ ,  $C + \sum_{i=1}^{j} W(v_i, v_{i+1}) \ge 0$ .

#### Theorem - energy strategy

[Brim et al. FMSD'11]

Given a game graph (V,E,W) where  $W: E \to \mathbb{Z}$ , if there exists a winning energy strategy, then there exists a memoryless winning energy strategy. Further, there is an algorithm which returns the memoryless winning energy strategy.

### Energy game

#### Modification of $G(\mathcal{S}, \mathcal{F})$ to an energy game graph

- Reduce multiplicative game graph to addition game graph.
- Weights are required to be integers.
- Winning energy strategy provides plays lower bounded by a value.

#### Bounded game graph

$$W(e) = \frac{a_e}{b_e}$$

 $LCM_G := least common multiple \{b_e : e \in E\}$ 

#### Energy game graph

$$G^e = (V,E,W^e)$$

$$\mathbf{W}^e = - \mathrm{LCM}_G \cdot \mathbf{W}$$

#### Theorem - bounded strategy

 $\sigma$  is a winning energy strategy for  $G^e$  if and only if  $\sigma$  is a winning bounded strategy for G.

### Reduction to energy game



### Reduction to energy game



#### Winning energy strategy

$$\sigma: V_0 \to V_1$$

$$f_1 \mapsto (1, f_1)$$

$$f_2 \mapsto (2, f_2)$$

$$f_3 \mapsto (1, f_3)$$

$$f_4 \mapsto (2, f_4)$$

### Conclusion

- ☐ An abstraction technique and game based approach for synthesizing a switching logic for stabilization.
- □ Our approach can be combined with temporal logic properties to obtain stable controllers which satisfy the temporal logic formulas.

# Thank you