An Algorithmic Approach to Global Asymptotic Stability Verification of Hybrid Systems

<u>Miriam García Soto</u> & Pavithra Prabhakar IMDEA Software Institute & Kansas State University

EMSOFT'16 Pittsburgh, PA, USA

October, 2016

Hybrid Systems

Cyber-Physical Systems

Systems controlled by computer-based algorithms integrated in the physical world.

Medical Devices

Automotive

Robotics

Process control

- Combine control, communication and computation.
- Design methodology for building high-confidence systems.
- Discrete and continuous behaviour.

Hybrid System

System exhibiting a mixed **continuous** and **discrete** behaviour.

Cruise control and automatic gearbox

Drive the vehicle velocity to a desired velocity.

Automatic gearbox: a hybrid system

Dynamical equations

$$\dot{E} = -\frac{p_q}{Mr}K_qE - \frac{p_q}{Mr}T_I$$
$$\dot{T}_I = -\frac{K_q}{\tau}E$$

$$x = \left(\begin{array}{c} E \\ T_I \end{array}\right)$$

 $E = v_d - v$ Difference between desired and current velocity T_I Integral part of the torque

Automatic gearbox: a hybrid system

Dynamics

Stability Notions

Asymptotic Stability (AS)

A system is AS with respect to 0 if it is Lyapunov stable and there exists a value $\delta > 0$ such that every execution σ starting from $B_{\delta}(0)$ converges to 0.

Global Asymptotic Stability (GAS)

A system is GAS with respect to 0 if it is Lyapunov stable and every execution σ converges to 0.

Region Stability (RS)

A system is RS with respect to R if for every execution σ there exists a value T \ge 0 such that σ at time T belongs to R.

Global Asymptotic Stability Verification

GAS verification

- * **Step 1 :** Asymptotic Stability (AS) verification
- Step 2 : Stability zone construction
- * Step 3 : Region Stability (RS) verification

Polyhedral Switched System (PSS)

- Dynamics are modelled by polyhedral inclusions.
- Invariants and guards are polyhedral sets.

Step 1: AS verification

 Local analysis is reduced to the switching predicates passing through the equilibrium point.

Step 1: AS verification

Local analysis is reduced to the switching predicates passing through the equilibrium point.

Concrete system \mathcal{H}'

Concrete system \mathcal{H}'

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Concrete system \mathcal{H}'

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Concrete system \mathcal{H}'

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Abstract system $\mathcal{A}(\mathcal{H}', \mathcal{F})$

Concrete system \mathcal{H}'

Abstract system $\mathcal{A}(\mathcal{H}', \mathcal{F})$

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Concrete system \mathcal{H}'

Abstract system $\mathcal{A}(\mathcal{H}', \mathcal{F})$

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Concrete system \mathcal{H}'

Abstract system $\mathcal{A}(\mathcal{H}', \mathcal{F})$

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Concrete system \mathcal{H}'

Abstract system $\mathcal{A}(\mathcal{H}', \mathcal{F})$

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Concrete system \mathcal{H}'

Abstract system $\mathcal{A}(\mathcal{H}', \mathcal{F})$

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Concrete system \mathcal{H}'

Abstract system $\mathcal{A}(\mathcal{H}', \mathcal{F})$

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Concrete system \mathcal{H}'

Abstract system $\mathcal{A}(\mathcal{H}', \mathcal{F})$

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Concrete system \mathcal{H}'

Abstract system $\mathcal{A}(\mathcal{H}', \mathcal{F})$

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Concrete system \mathcal{H}'

Abstract system $\mathcal{A}(\mathcal{H}', \mathcal{F})$

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Concrete system \mathcal{H}'

Abstract system $\mathcal{A}(\mathcal{H}', \mathcal{F})$

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

Abstract system A(H, F) $W(\pi) = 2 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot 1 = \frac{2}{9} < 1$

Model-checking

Theorem (Soundness)

Let $\mathcal{A}(\mathcal{H}, \mathcal{F})$ be a quantitative abstraction. The hybrid system \mathcal{H} is asymptotically stable if:

- * All executions which eventually remain in a region converge to the origin.
- * Every simple cycle has product of weights on the edges less than 1.

Step 2: Stability zone computation

 $\mathcal{Z} \subseteq \mathcal{R}$ is a **stability zone** with respect to \mathcal{R} if every execution starting at \mathcal{Z} will remain forever inside \mathcal{R} .

Stability zone computation

* Center region \mathcal{R} of \mathcal{H}

Stability zone computation

- * Center region \mathcal{R} of \mathcal{H}
- * $M = \max \{1, W(\pi): \pi \text{ path in } \mathcal{A}(\mathcal{H}, \mathcal{F})\}$

Stability zone computation

- Extract the center region \mathcal{R} of \mathcal{H} *
- M = max {1, W(π): π path in $\mathcal{A}(\mathcal{H}, \mathcal{F})$ } *

M = 2

Shrink the center region by a factor of M: \mathcal{Z} **

Stability zone computation for the gearbox

Step 3: RS verification

- Quantitative predicate abstraction.
- % Graph transformation.
- * Termination analysis.

Quantitative Predicate Abstraction

Graph Transformation

Graph Transformation

Delete nodes in the interior of stability zone.

Graph Transformation

- Delete nodes in the interior of stability zone.
- Delete non-reachable nodes from initial nodes.

Termination Analysis

∗ Existence of an edge with weight $∞ \Rightarrow$ RS False.

- * Existence of an edge with weight $\infty \Rightarrow$ RS False.
- * Existence of a cycle \Rightarrow RS inconclusive.

- [∗] Existence of an edge with weight ∞ ⇒ RS False.
- * Existence of a cycle \Rightarrow RS inconclusive.
- * Existence of nodes with no outgoing edges different to the nodes on the boundary of the stability zone \Rightarrow RS inconclusive.

- [∗] Existence of an edge with weight ∞ ⇒ RS False.
- * Existence of a cycle \Rightarrow RS inconclusive.
- * Existence of nodes with no outgoing edges different to the nodes on the boundary of the stability zone \Rightarrow RS inconclusive.

Summary

Future research

- Extension of the algorithmic stability verification to non-linear systems.
- Compositional analysis for input-output stability verification.
- Synthesis of state based switching control for a family of dynamical systems.

Pavithra Prabhakar and Miriam García Soto, Counterexample Guided Abstraction Refinement for Stability Analysis, CAV 2016

- ——, Hybridization for Stability Analysis of Switched Linear Systems, HSCC 2016
- ——, Foundations of Quantitative Predicate Abstraction for Stability Analysis of Hybrid Systems, VMCAI 2015
- ——, An algorithmic approach to stability verification of polyhedral switched systems, ACC 2014
 - ——, Abstraction Based Model-Checking of Stability of Hybrid Systems, CAV 2013

Thank you