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Cyber-Physical Systems (CPSs)

Medical Devices Automotive Robotics Aeronautics Process control

Systems in which software "cyber" interacts with the "physical" world
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✤ Automotive systems: Cruise control, lane assistants 
✤ Medical Devices: Pacemakers, infusion pumps

Software controlled physical systems

Critical aspects in CPS design 

✤ Security
✤ Reliability
✤ Safety

Grand Challenge
How do we build and deploy robust CPS? 



Formal Verification

✤ Models for Cyber-Physical Systems (Automata based)
✤ Robustness Specifications (Logic based)
✤ Verification Algorithms (Model checker)
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Model

Specifications

Verification
Certificate
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Model checker
or

Theorem prover



CPS Model
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yu

ẋ = f(x, u)

y = h(x)

Physical System

Control

u = g(y)

Continuous dynamics

Discrete dynamics

Hybrid Control Systems

Hybrid Systems capture one of the main features of 
CPS, the mixed continuous and discrete behaviour. 



Cruise control & automatic gearbox
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Hybrid Automata
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CPS Specifications
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Specifications
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Cruise control Robotic arm Bipedal robot walking

✤ Cruise control: stability with respect to the desired velocity
✤ Robotic arm: stability with respect to the set point
✤ Bipedal walking: stability with respect the periodic orbit

Stability: Small perturbations in the initial state or input to the system result 
in only small deviations from the nominal behavior



Stability notions
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A system is Lyapunov stable with respect to the 
equilibrium  point  0  if  for  every  ε  >  0  there 
exists  δ  >  0  such  that  for  every  execution  σ 
starting from Bδ(0) , σ(t) ∈ Bε(0), for all time t.

A system is asymptotically stable  with respect 
to  the  equilibrium  point  0  if  it  is  Lyapunov 
stable  and  there  exist  η  >  0  such  that  every 
execution σ starting from Bη(0) converges to 0.
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Stability analysis challenges
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Stability  can  be  determined 
by eigenvalues analysis

Linear dynamical systems

Stable Stable

x

y
y

x

Eigenvalue  analysis  does  not 
suffice for switched linear system

Stable Unstable

Linear hybrid systems
y

x

x

y



State of the art: Lyapunov’s second method
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ẋ = F (x)

Continuous dynamics: If there exists a Lyapunov function for the 
system, then the system is Lyapunov stable

V

xy

✤ Continuously differentiable

V : Rn ! R+

@V (x)
@x

F (x)  0 8x

V (x) � 0 8x

V (x) = 0 i↵ x = 0

✤ Positive definite

✤ Function value decreases along any trajectory

Lyapunov function

✤ Common Lyapunov functions
✤ Multiple Lyapunov functions

Switched and hybrid systems:



Automated analysis
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Template based automated search

✤ Choose a template

✤ Encode Lyapunov function conditions as constraints

✤ Solve using sum-of-squares programming tools

Shortcomings:

✤ Success depends crucially on the choice of the template
✤ The current methods provide no insight into the reason for the failure, 

when a template fails to prove stability
✤ No guidance regarding the choice of the next template

Alternate approach
CEGAR 
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Counterexample Guided 
Abstraction Refinement (CEGAR)



CEGAR for stability

15

Property 
violated

Abstraction 
Relation

Analysis 
Results

Abstract                 
Counterexample

Property
Abstract 
System

Concrete 
System

Abstract Model-Check

ValidateRefine

Yes

No

YesNo

Property 
satisfied First CEGAR approach 

for stability verification 
of hybrid systems

✤ Systematically iterates over the 
abstract systems

✤ Returns a counterexample in the case 
that the abstraction fails

✤ The counterexample can be used to 
guide the choice of the next abstraction

✤ Success depends crucially on the 
choice of the template

✤ The current methods provide no 
insight into the reason for the failure, 
when a template fails to prove stability

✤ No guidance regarding the choice of 
the next template

CEGAR framework Template based search
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Quantitative Predicate Abstraction
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Quantitative Predicate Abstraction
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Quantitative Predicate Abstraction

f1

f2

f3

f4

u1u2

u3 u4

Facets F = {f1, f2, f3, f4}

Concrete system



19

Quantitative Predicate Abstraction
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Quantitative Predicate Abstraction
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Quantitative Predicate Abstraction
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Concrete system Abstract system

An edge between facets indicates the existence of an execution.
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Quantitative Predicate Abstraction
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Quantitative Predicate Abstraction
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Weights capture information about distance to the equilibrium point along the executions.
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Quantitative Predicate Abstraction
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Quantitative Predicate Abstraction

=) f1

f2

f3
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Concrete system

⇡

Abstract system

An edge between facets indicates the existence of an execution.

Weights capture information about distance to the equilibrium point along the executions.
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Quantitative Predicate Abstraction - samples

Product of edge weights = 1

Lyapunov Stable

Product of edge weights = 1/4

Asymptotically Stable

Product of edge weights = 4

Unstable
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|~b|
|~a|

c

~a

~b

Higher dimensions

Weight computation
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2 dimension

f2 f1

f1

f2

d2 d1

αd2

αd1

|d2|
|d1|

=
|↵d2|
|↵d1|

Weight Weight (LP problems)

sup
|v2|
|v1|

t > 0, v1 2 f1, v2 2 f2, v2 = v1 + ct

Constant dynamics ẋ = c

c
~d

~d
|~b+~d|
|~a+~d|

6=



28

^
ai · x  bi

c
c

Weight computation

Weight (LP problems)

t > 0, v1 2 f1, v2 2 f2, v2 = v1 + ct,
V

ai · c 6 bi

V
ai · (v2 � v1) 6 bit

sup
|v2|
|v1|

Polyhedral inclusion dynamics ẋ 2 P

P is a polyhedral set
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✤ Solution is an exponential function

✤ Need a representation on which optimization can be performed

✤ Approximation methods [Girard et al., Frehse et al.]  

Weight computation

Linear dynamics ẋ = Ax

Weight

t > 0, v1 2 f1, v2 2 f2, v2 = v1eAt

sup
|v2|
|v1|
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Hybridization
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Hybridization and soundness

ẋ 2 P

Linear hybrid system Polyhedral hybrid system

ẋ = Ax

x1

x2

x1

x2

P = {Ax : x 2 R}

R
x1 6 0
x2 > 0

Hybridization for stability analysis of switched linear systems. HSCC’16

If the hybridized polyhedral hybrid system is Lyapunov (asymptotically) stable 
then the original linear hybrid system is Lyapunov (asymptotically) stable.

Theorem - Hybridization
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Soundness of Quantitative Predicate Abstraction

A polyhedral hybrid system is Lyapunov stable if
✤ the abstract weighted graph has no edges with infinite weights, and
✤ no cycles with product of edge weights greater than 1

Theorem - Model-checking

Every cycle has weight smaller than 1 
=> Concrete system is stable => Stop

There  is  a  cycle,  !,  with  weight  greater 
than 1 => ! is an abstract counterexample 
=> Validation

1

1

1

2
2
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Abstract system

⇡

Abstraction based model-checking of stability of hybrid systems.  CAV’13

Foundations of Quantitative Predicate Abstraction for Stability Analysis of Hybrid Systems. VMCAI’15
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Counterexample

✤ Model-checking of the abstract system returns an abstract counterexample 
if the abstract system fails to establish stability.

Abstract Counterexample (ACE): 
A cycle with product of edge weights greater than 1

✤ Spurious ACE:  If there exist no infinite execution (concrete) of the system 
which follows the edges and weights of the cycle (and diverges)

✤ Validation: Checking if the ACE is spurious.

Validation is not a bounded model-checking problem!
Requires checking for an infinite execution instead of a finite execution.
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Validation



35

Validation

Existence of an infinite concrete counterexample is equivalent to the existence of a finite 
execution along the cycle with certain properties, which can be encoded as an SMT formula.

Facets

ACE f1 f1f2 f3 f4

x1 x2 x3 x4 xk xk+1

A counterexample f1 ⟶ f2 ⟶ f3 ⟶ … ⟶ f1 is valid

⟺

∃ α > 1, ∃ x1 ∈ f1, …, xk ∈ fk, xk+1 ∈ f1

x1 ⟶ x2 ⟶ x3 ⟶ … ⟶ xk ⟶ xk+1, xk+1 = αx1

Theorem - Validation

fk
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Refinement



Refinement
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Counterexample guided abstraction refinement for stability analysis.  CAV’16
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Software tool
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AVERIST flowchart and software dependencies

LHS
PHS

Stable/Unstable/Abstract counterexample

HYBRIDIZATION ABSTRACTION

MODEL-CHECKING

VALIDATION

REFINEMENT

AVERIST PPL

GLPK

NetworkX

Z3

Stability Verifier

http://software.imdea.org/projects/averist/index.html

http://software.imdea.org/projects/averist/index.html


Conclusion
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Summary
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CPS 
design

Control 
theory

Formal 
methods

✤ Development of a novel CEGAR approach, based on abstraction and 
model-checking techniques

✤ Automatic process for linear and polyhedral hybrid systems

✤ Framework extendable to more complex class of hybrid systems 

✤ Techniques implemented in AVERIST provide promising results

✤ Application to an automatic gearbox
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Questions?

LHS
PHS

Stable/Unstable/Abstract counterexample

HYBRIDIZATION ABSTRACTION

MODEL-CHECKING

VALIDATION

REFINEMENT

AVERIST PPL

GLPK

NetworkX

Z3

Stability Verifier

http://software.imdea.org/projects/averist/index.html

http://software.imdea.org/projects/averist/index.html

