A CEGAR Approach for Stability Verification of Linear Hybrid Systems

Miriam García Soto

Co-authored work with Pavithra Prabhakar

DARS 2017

Cyber-Physical Systems (CPSs)

Systems in which software "cyber" interacts with the "physical" world

Medical Devices

Automotive

Robotics

Aeronautics

Process control

Software controlled physical systems

- * Automotive systems: Cruise control, lane assistants
- * Medical Devices: Pacemakers, infusion pumps

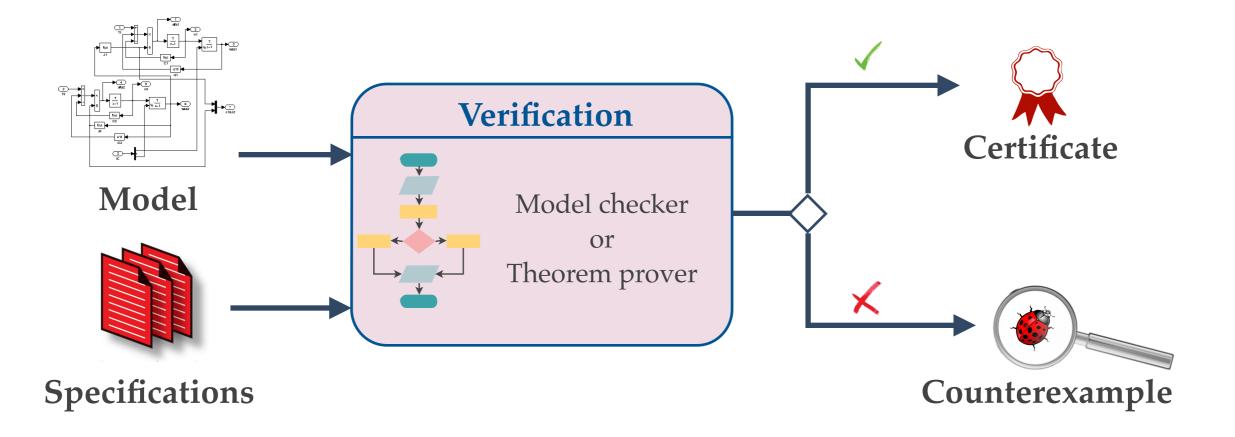
Critical aspects in CPS design

- Security
- * Reliability
- Safety

Grand Challenge

How do we build and deploy robust CPS?

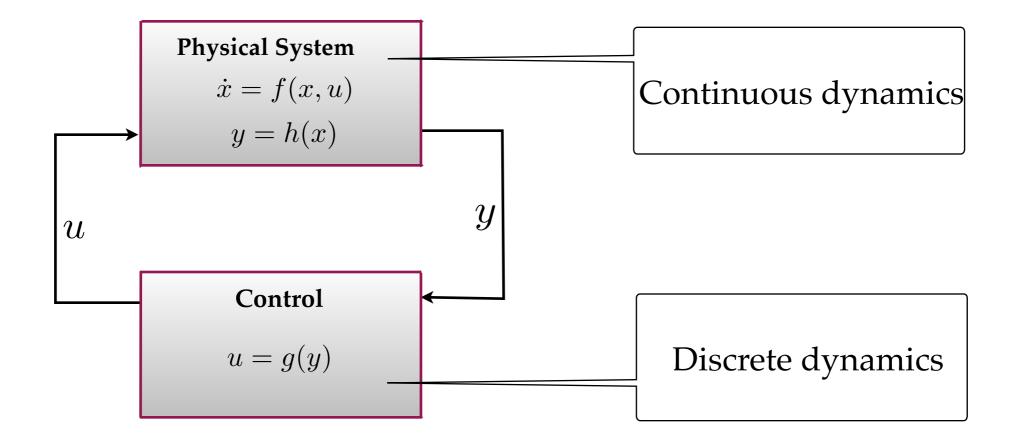
Formal Verification



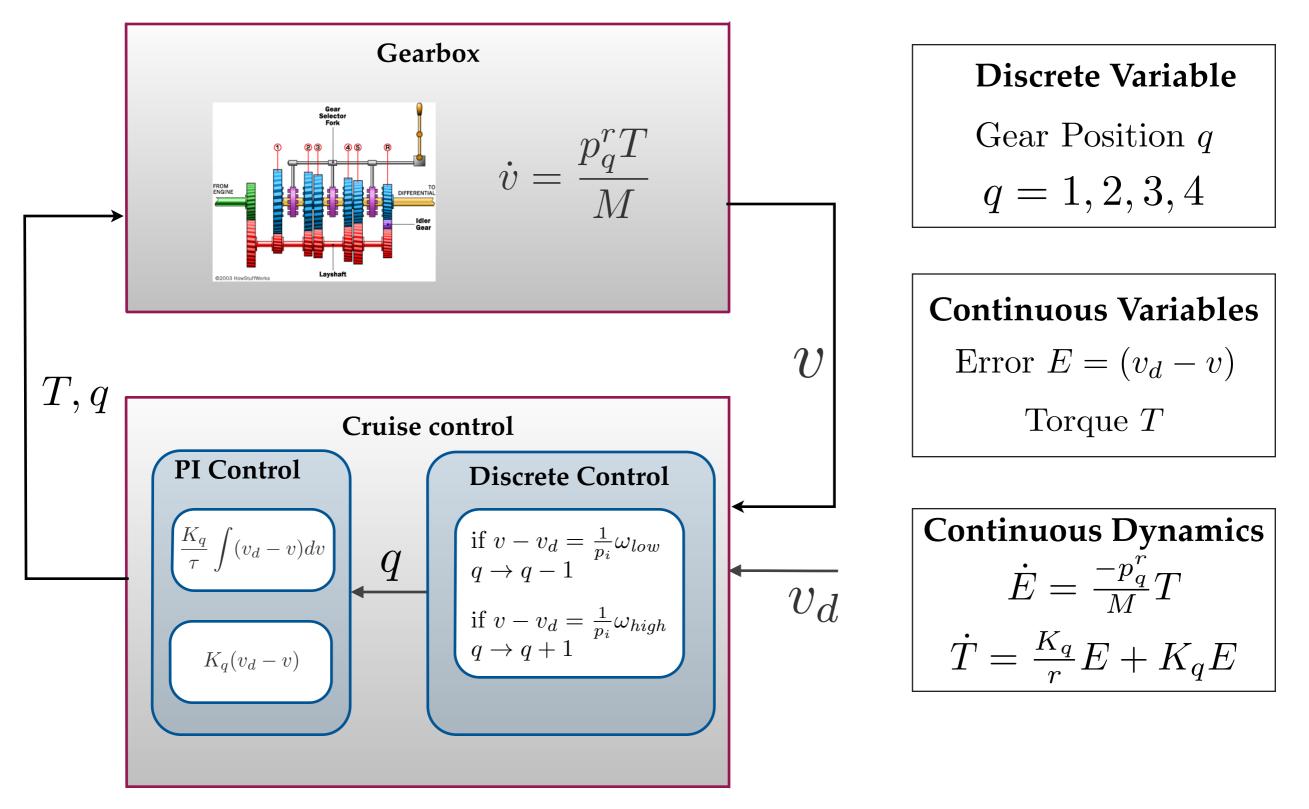
- * Models for Cyber-Physical Systems (Automata based)
- Robustness Specifications (Logic based)
- * Verification Algorithms (Model checker)

Hybrid Control Systems

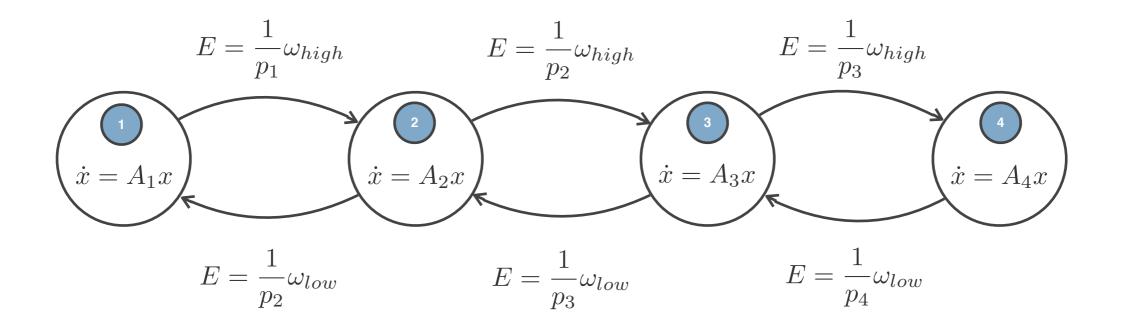
Hybrid Systems capture one of the main features of CPS, the mixed **continuous** and **discrete** behaviour.



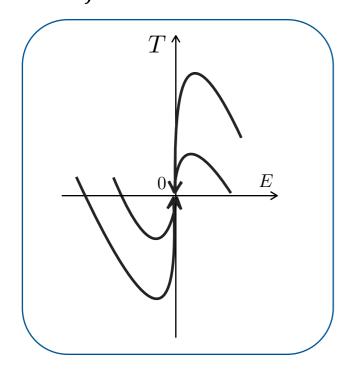
Cruise control & automatic gearbox



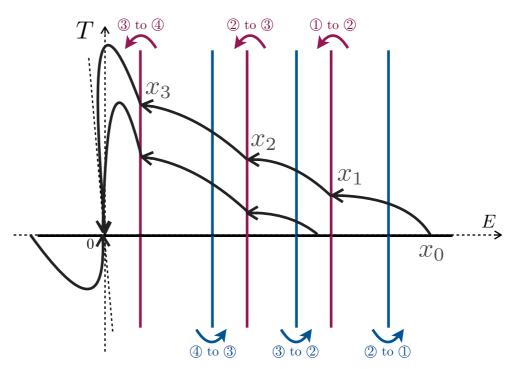
Hybrid Automata



Trajectories

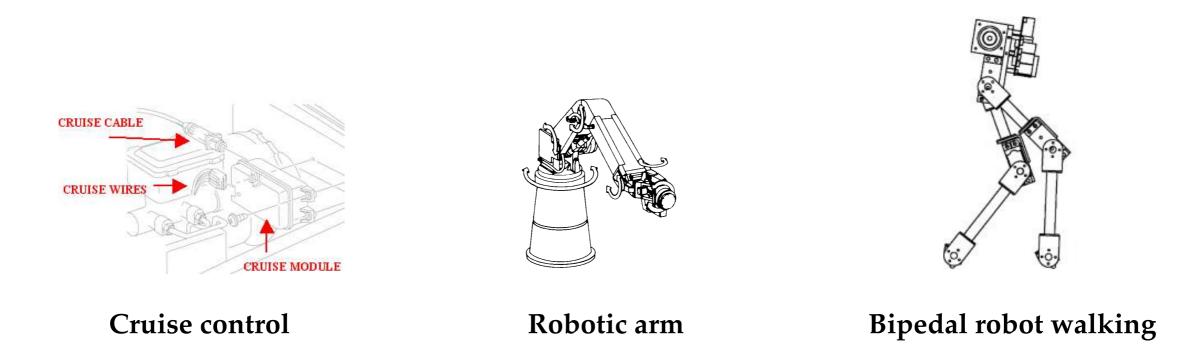


Executions



CPS Specifications

Stability: Small perturbations in the initial state or input to the system result in only small deviations from the nominal behavior

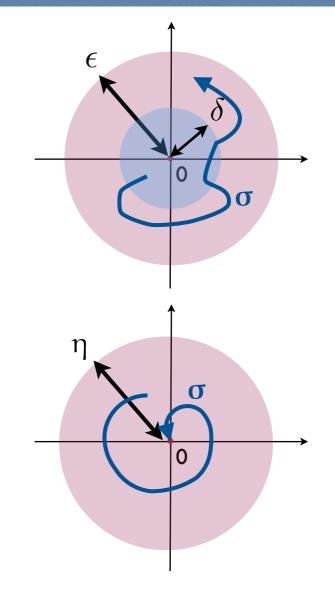


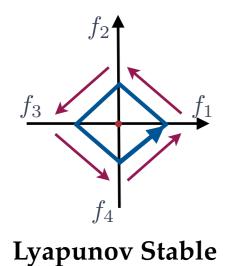
- * Cruise control: stability with respect to the desired velocity
- Robotic arm: stability with respect to the set point
- * Bipedal walking: stability with respect the periodic orbit

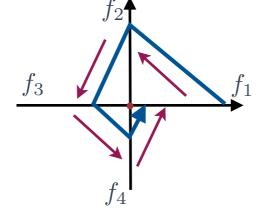
Stability notions

A system is **Lyapunov stable** with respect to the **equilibrium point 0** if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every execution σ starting from $B_{\delta}(0)$, $\sigma(t) \in B_{\varepsilon}(0)$, for all time t.

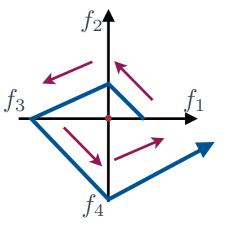
A system is **asymptotically stable** with respect to the **equilibrium point 0** if it is Lyapunov stable and there exist $\eta > 0$ such that every execution σ starting from $B_{\eta}(0)$ converges to 0.







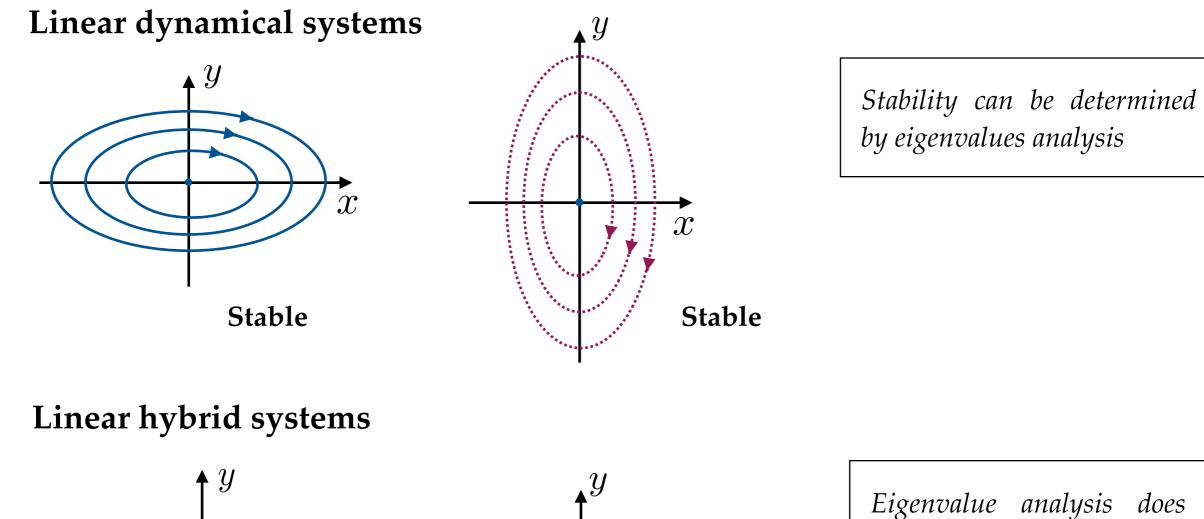
Asymptotically Stable



Stability analysis challenges

 \vec{x}

Stable



Ń

Unstable

Eigenvalue analysis does not suffice for switched linear system

State of the art: Lyapunov's second method

Continuous dynamics:

 $\dot{x} = F(x)$

If there exists a **Lyapunov function** for the system, then the system is Lyapunov stable

Lyapunov function

* Continuously differentiable

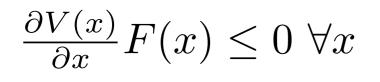
 $V: \mathbb{R}^n \to \mathbb{R}^+$

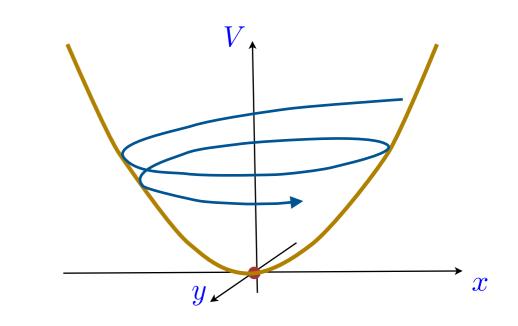
Positive definite

 $V(x) \ge 0 \,\forall x$

V(x) = 0 iff x = 0

Function value decreases along any trajectory





Switched and hybrid systems:

- Common Lyapunov functions
- Multiple Lyapunov functions

Automated analysis

Template based automated search

- * Choose a template
- Encode Lyapunov function conditions as constraints
- Solve using sum-of-squares programming tools

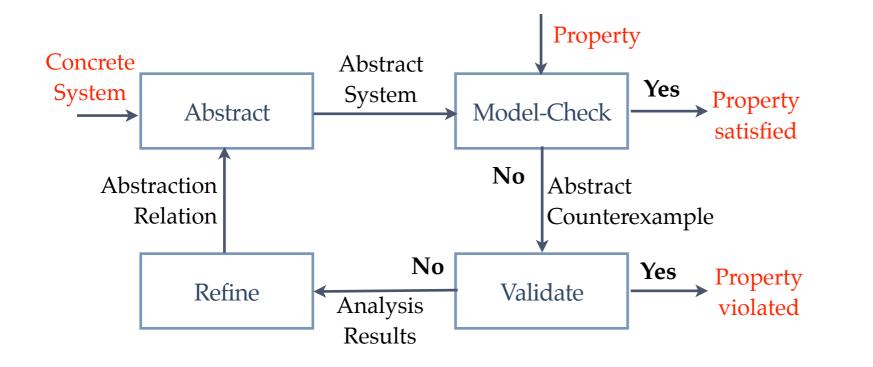
Shortcomings:

- * Success depends crucially on the choice of the template
- The current methods provide no insight into the reason for the failure, when a template fails to prove stability
- * No guidance regarding the choice of the next template

Alternate approach CEGAR

Counterexample Guided Abstraction Refinement (CEGAR)

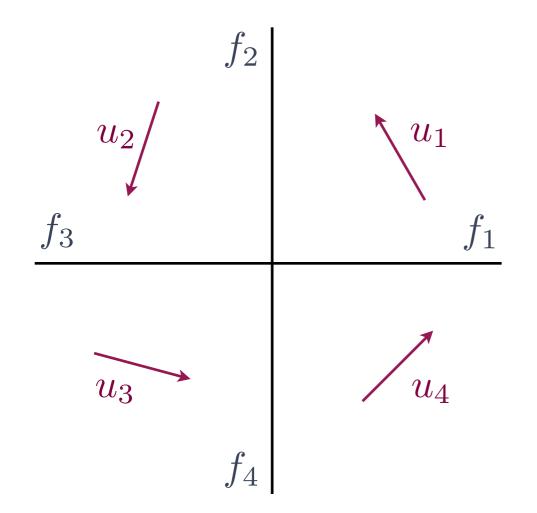
CEGAR for stability



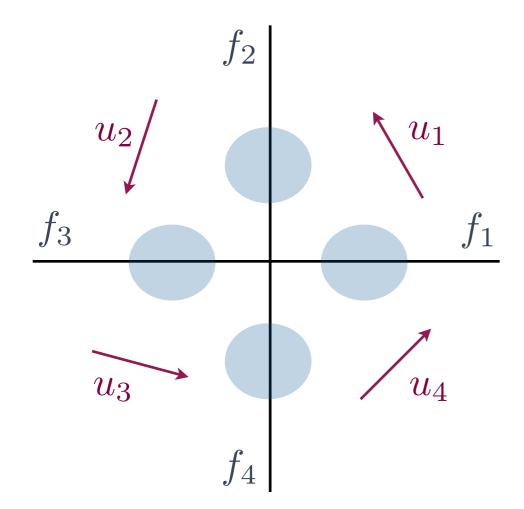
First CEGAR approach for stability verification of hybrid systems

CEGAR framework	Template based search
 Systematically iterates over the abstract systems 	 Success depends crucially on the choice of the template
 Returns a counterexample in the case that the abstraction fails 	 The current methods provide r insight into the reason for the f when a template fails to prove
 The counterexample can be used to guide the choice of the next abstraction 	 No guidance regarding the cho the next template

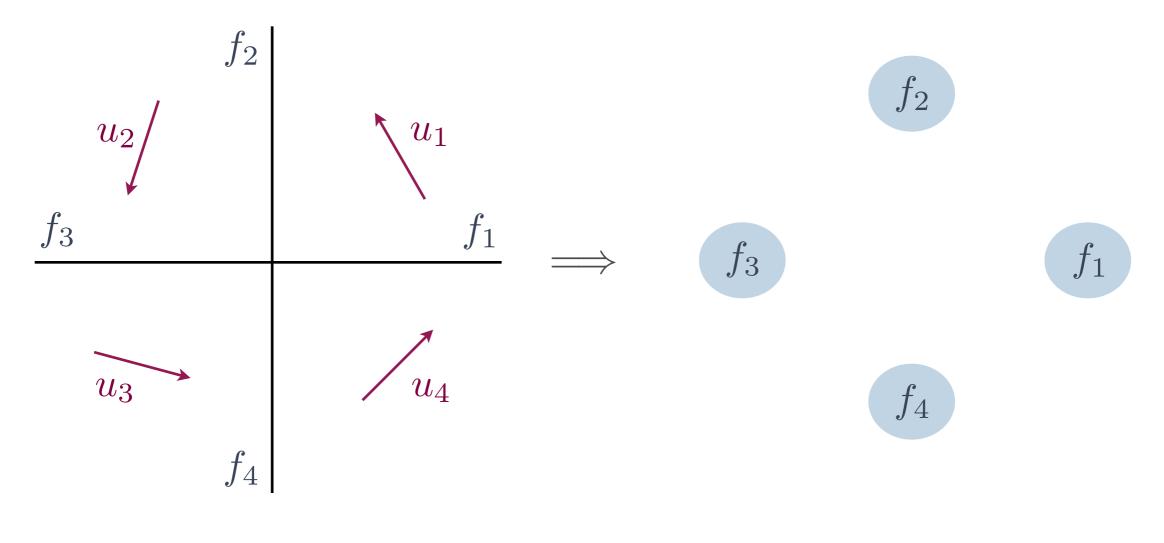
- the
- no failure, e stability



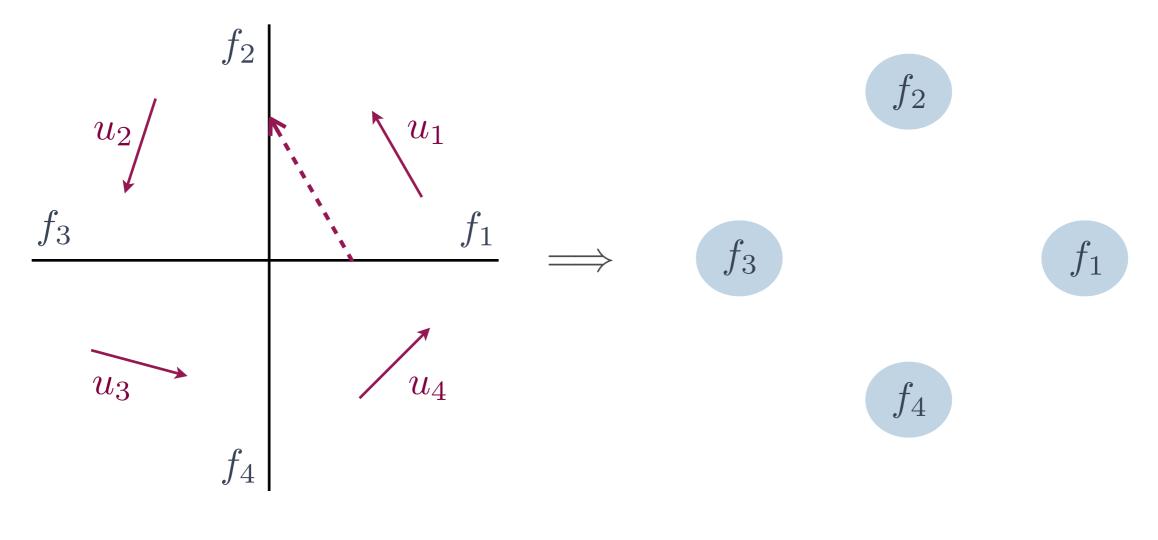
Concrete system



Concrete system

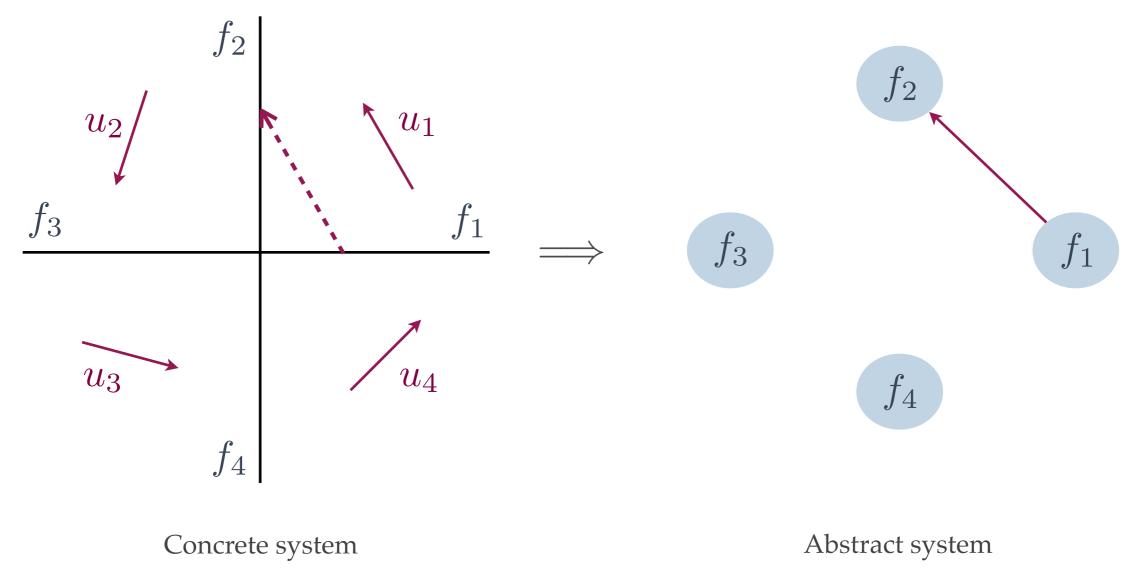


Concrete system



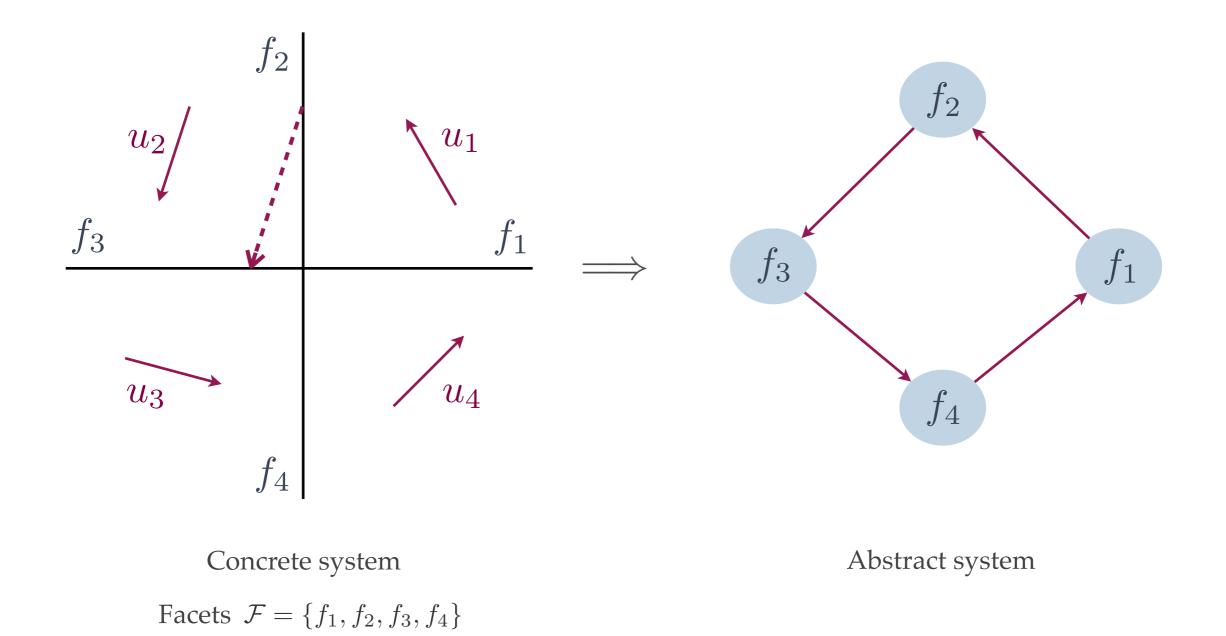
Concrete system

Abstract system

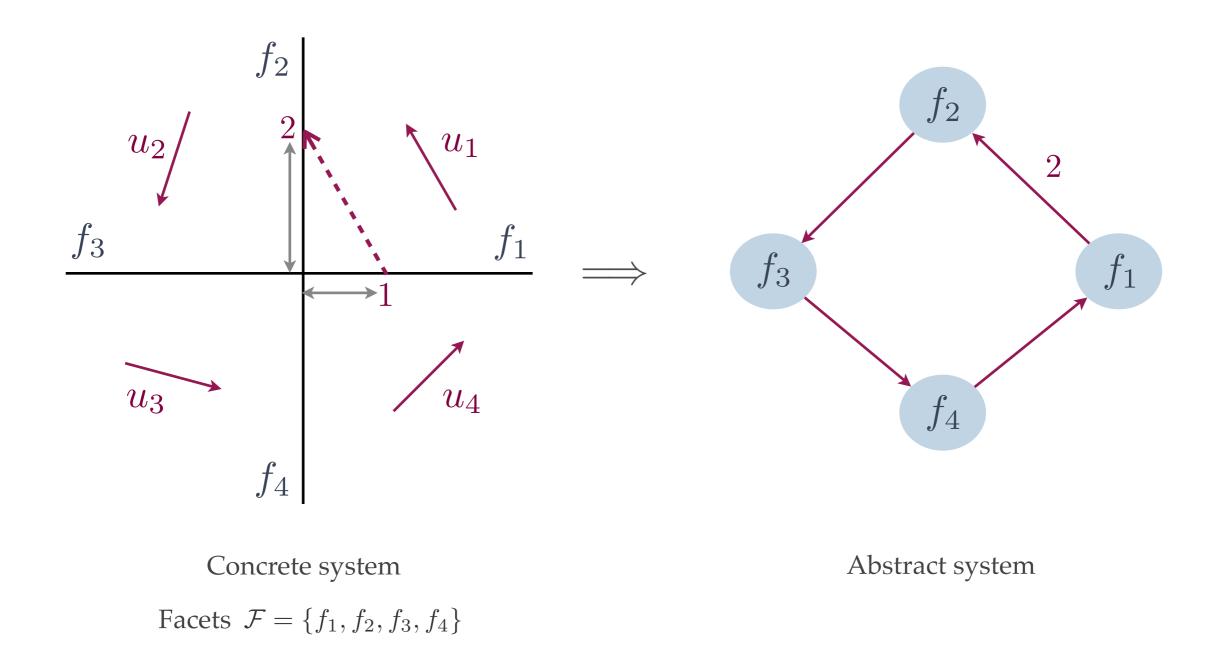


Facets $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$

An edge between facets indicates the existence of an execution.

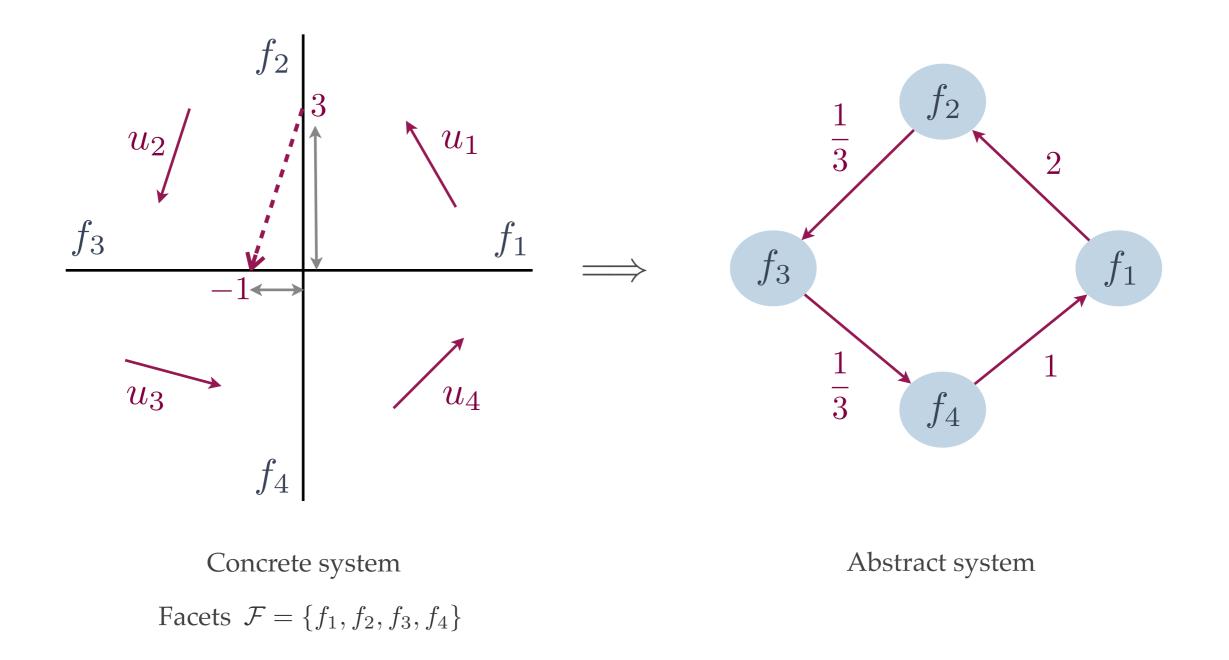


An edge between facets indicates the existence of an execution.



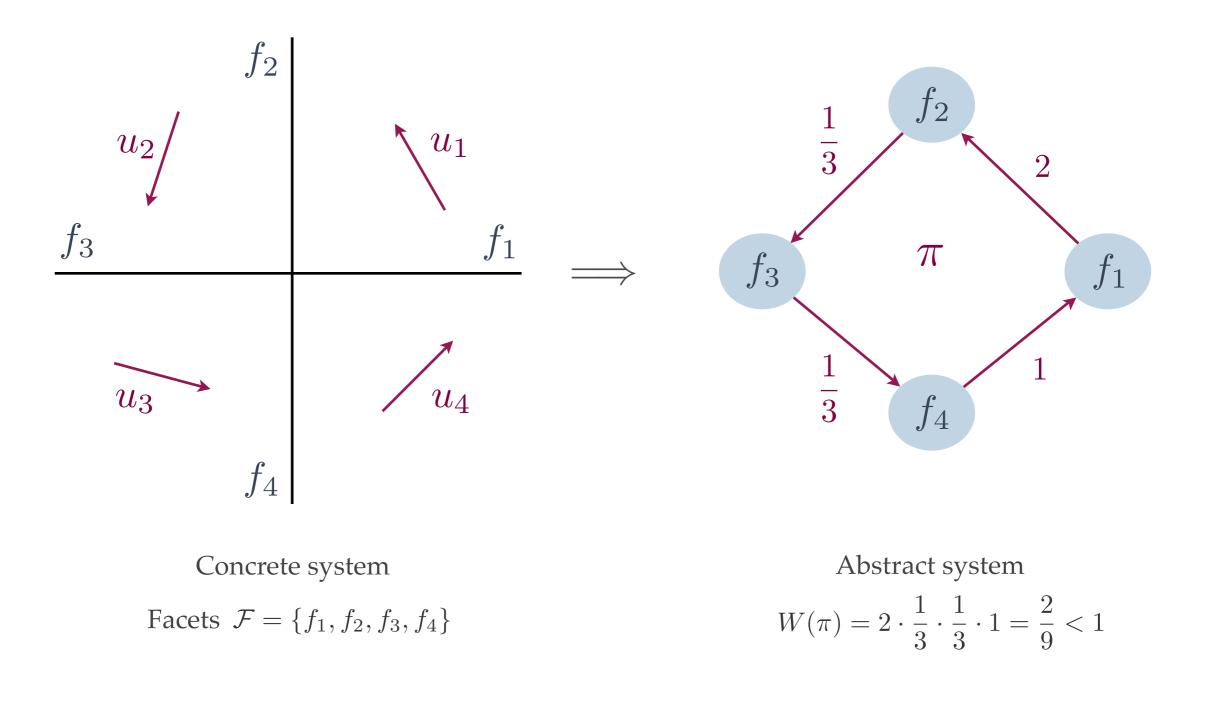
An edge between facets indicates the existence of an execution.

Weights capture information about distance to the equilibrium point along the executions.



An edge between facets indicates the existence of an execution.

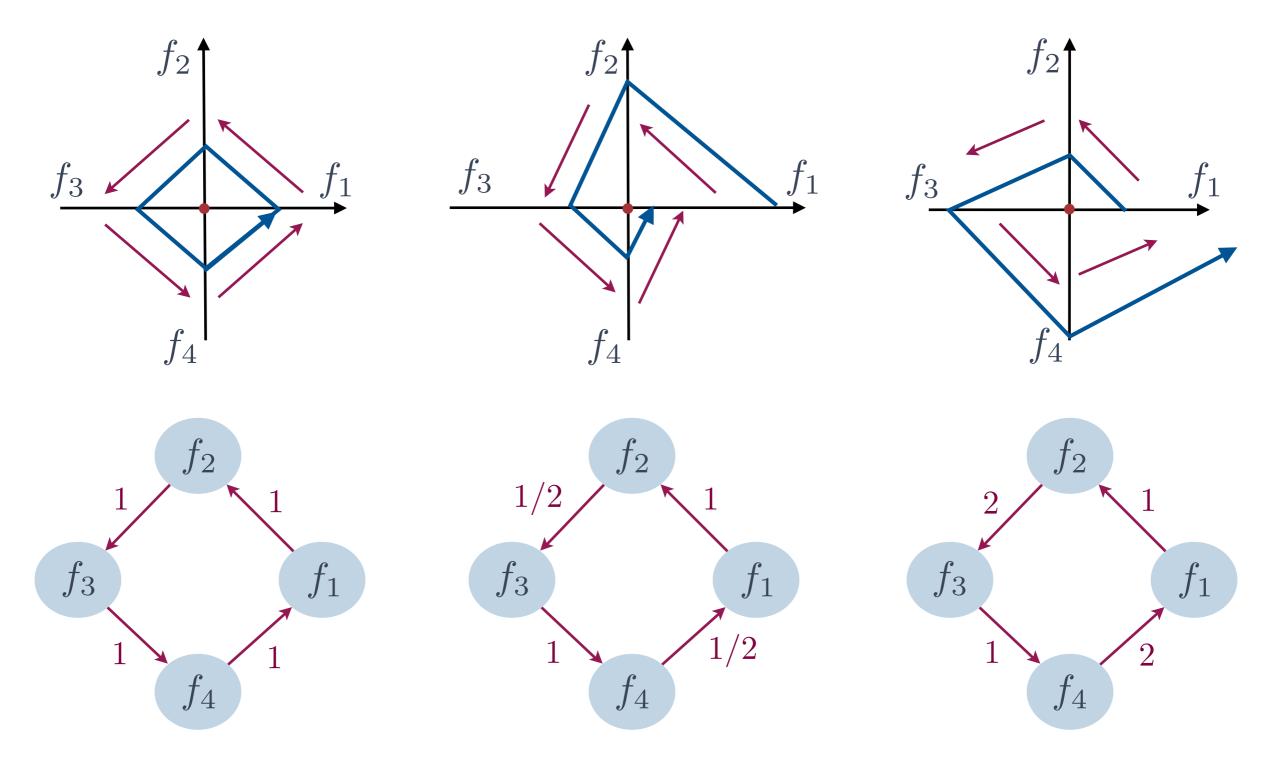
Weights capture information about distance to the equilibrium point along the executions.



An edge between facets indicates the existence of an execution.

Weights capture information about distance to the equilibrium point along the executions.

Quantitative Predicate Abstraction - samples

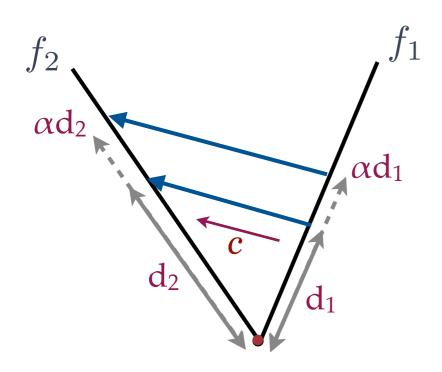


Product of edge weights = 1 Lyapunov Stable Product of edge weights = 1/4 Asymptotically Stable Product of edge weights = 4 Unstable

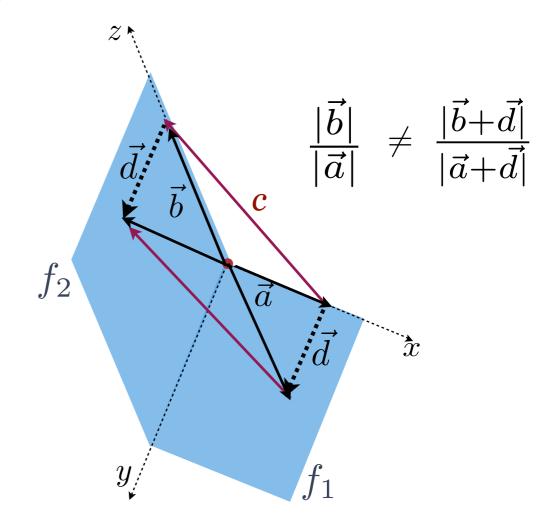
Weight computation

Constant dynamics $\dot{x} = c$

2 dimension

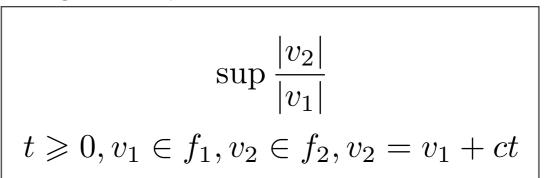


Higher dimensions



Weight $\left| \frac{|d_2|}{|d_1|} = \frac{|\alpha d_2|}{|\alpha d_1|} \right|$

Weight (LP problems)



Weight computation

Polyhedral inclusion dynamics $\dot{x} \in P$

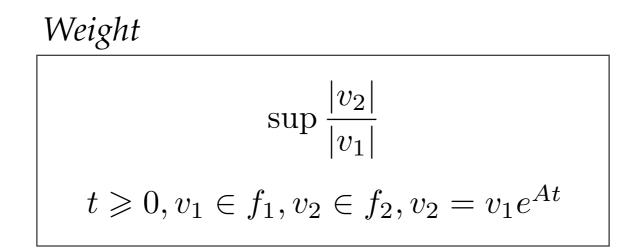
P is a polyhedral set

Weight (LP problems)

$$\sup \frac{|v_2|}{|v_1|} \qquad \qquad \bigwedge a_i \cdot (v_2 - v_1) \leqslant b_i t$$
$$t \ge 0, v_1 \in f_1, v_2 \in f_2, v_2 = v_1 + ct, \bigwedge a_i \cdot c \leqslant b_i$$

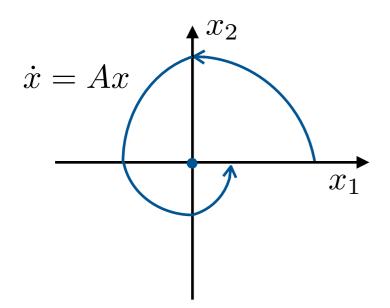
Weight computation

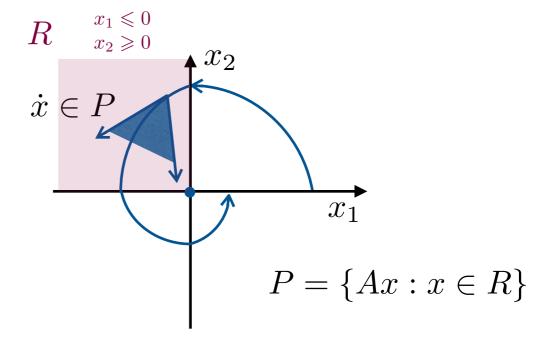
Linear dynamics $\dot{x} = Ax$



- * Solution is an exponential function
- * Need a representation on which optimization can be performed
- * Approximation methods [Girard et al., Frehse et al.]

Hybridization and soundness





Linear hybrid system

Polyhedral hybrid system

Theorem - Hybridization

If the hybridized polyhedral hybrid system is Lyapunov (asymptotically) stable then the original linear hybrid system is Lyapunov (asymptotically) stable.

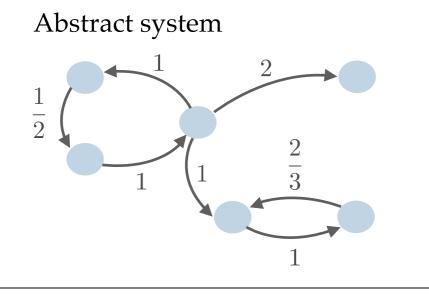
Hybridization for stability analysis of switched linear systems. <u>HSCC'16</u>

Soundness of Quantitative Predicate Abstraction

Theorem - Model-checking

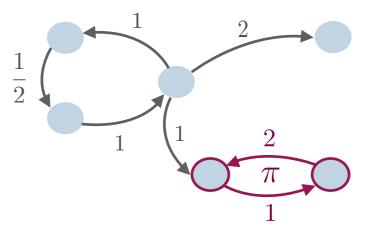
A polyhedral hybrid system is Lyapunov stable if

- * the abstract weighted graph has no edges with infinite weights, and
- * no cycles with product of edge weights greater than 1



Every cycle has weight smaller than 1 => Concrete system is stable => Stop

Abstract system



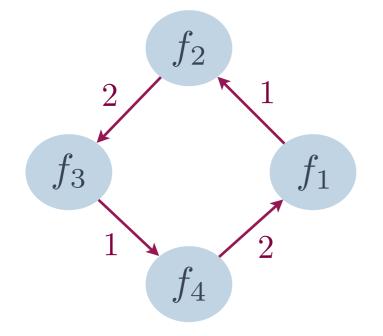
There is a cycle, π , with weight greater than $1 \Rightarrow \pi$ is an abstract counterexample \Rightarrow Validation

Abstraction based model-checking of stability of hybrid systems. <u>CAV'13</u>

Foundations of Quantitative Predicate Abstraction for Stability Analysis of Hybrid Systems. <u>VMCAI'15</u>

Counterexample

 Model-checking of the abstract system returns an abstract counterexample if the abstract system fails to establish stability.



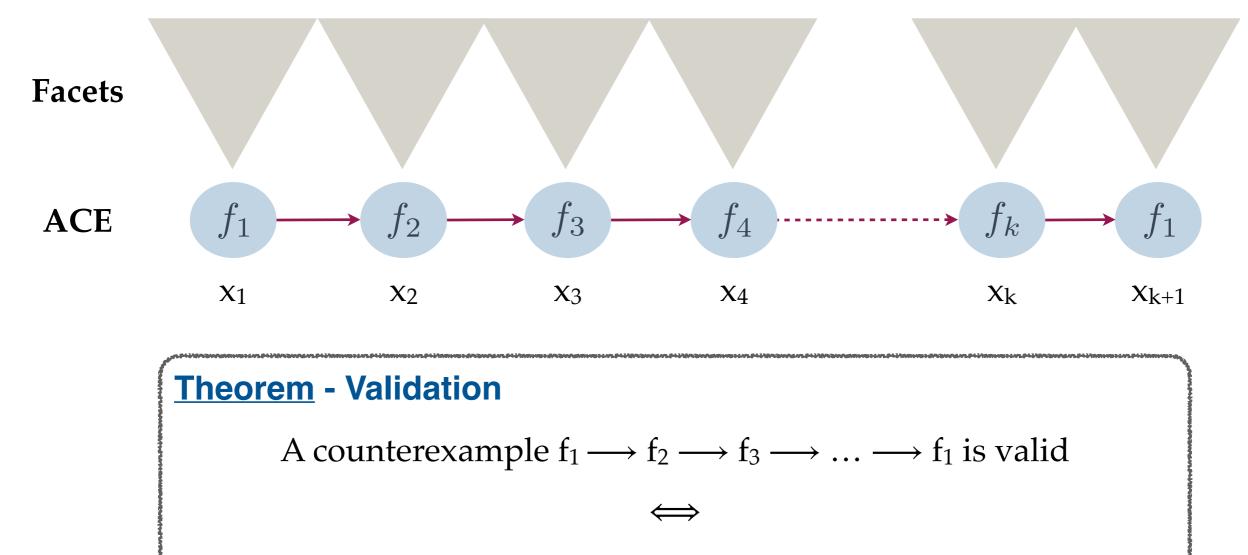
Abstract Counterexample (ACE): A cycle with product of edge weights greater than 1

- Spurious ACE: If there exist no infinite execution (concrete) of the system which *follows* the edges and weights of the cycle (and diverges)
- * Validation: Checking if the ACE is spurious.

Validation is not a bounded model-checking problem! Requires checking for an infinite execution instead of a finite execution.

Validation

Validation



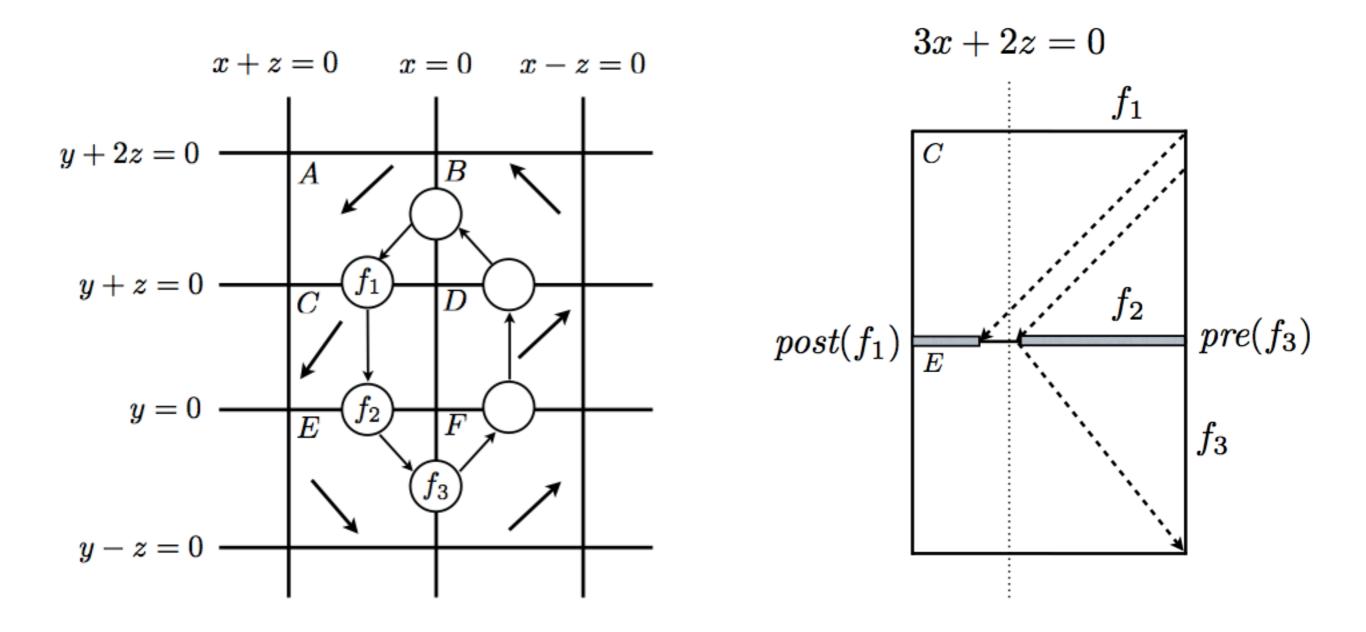
$$\exists \alpha > 1, \exists x_1 \in f_1, ..., x_k \in f_k, x_{k+1} \in f_1$$

$$x_1 \longrightarrow x_2 \longrightarrow x_3 \longrightarrow \ldots \longrightarrow x_k \longrightarrow x_{k+1}, x_{k+1} = \alpha x_1$$

Existence of an infinite concrete counterexample is equivalent to the existence of a finite execution along the cycle with certain properties, which can be encoded as an **SMT formula**.

Refinement

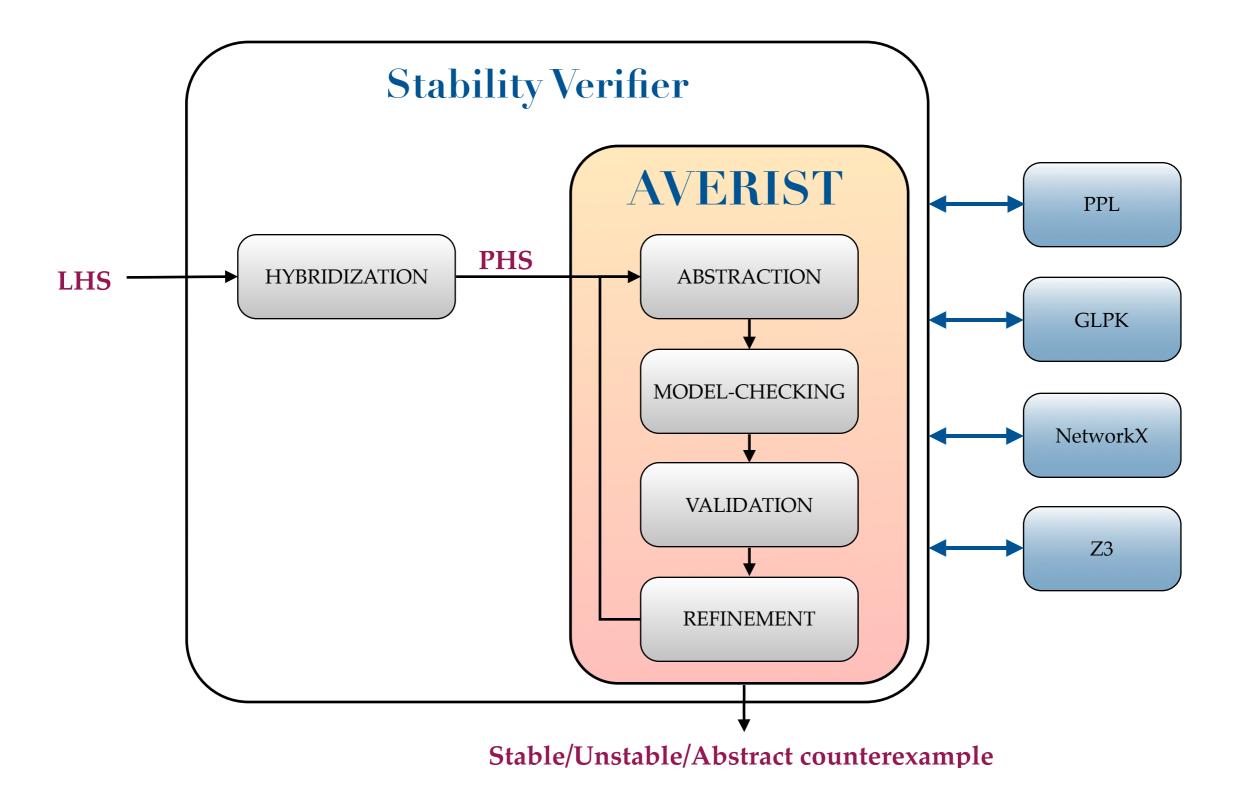
Refinement



Counterexample guided abstraction refinement for stability analysis. <u>CAV'16</u>

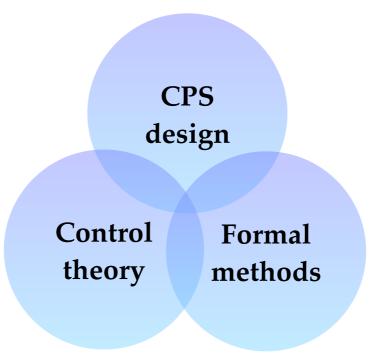
Software tool

AVERIST flowchart and software dependencies



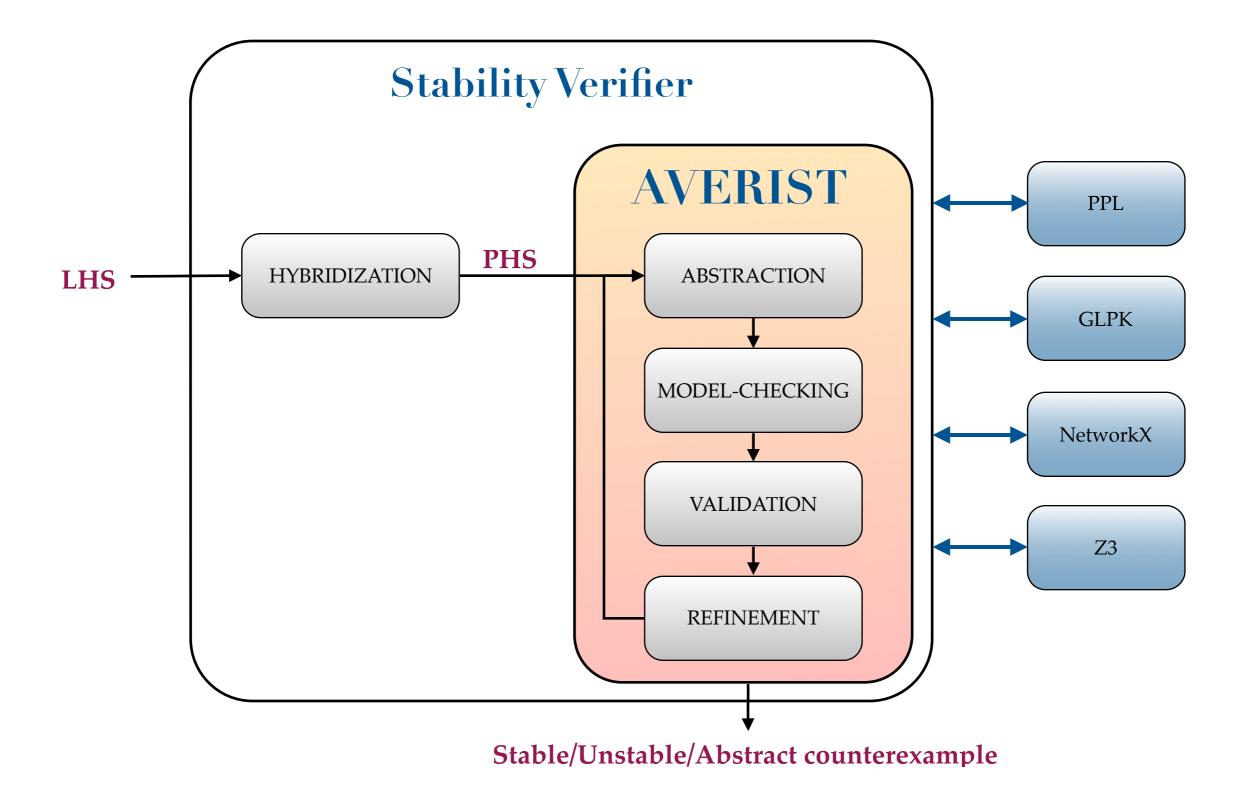
http://software.imdea.org/projects/averist/index.html

Conclusion



- * Development of a novel **CEGAR approach**, based on abstraction and model-checking techniques
- * Automatic process for linear and polyhedral hybrid systems
- * Framework extendable to more complex class of hybrid systems
- * Techniques implemented in **AVERIST** provide promising results
- * Application to an **automatic gearbox**

Questions?



http://software.imdea.org/projects/averist/index.html