Synthesis of Linear Hybrid Automata from Experimental Data

Miriam García Soto

Co-authored work with Thomas A. Henzinger, Christian Schilling and Luka Zeleznik

IST Austria - 2019

Motivation

Main goal of many sciences is to create a model from a real system

Experimental data

Motivation

Main goal of many sciences is to create a model from a real system

Experimental data

Challenge

How to automatically create a model?

Motivation

Main goal of many sciences is to create a model from a real system

Experimental data

Challenge

How to automatically create a model?

Model: Linear Hybrid Automaton

Hybrid behavior

Step Response Analysis of Thermotaxis in Caemorhabditis elegans

The Activation of the Company o

- Finite behavioral states
- * Behavioral states depending on concentration of food, oxygen, temperature, etc.
- Mixed discrete and continuous behavior

Hybrid behavior

- Finite behavioral states
- * Behavioral states depending on concentration of food, oxygen, temperature, etc.
- Mixed discrete and continuous behavior

Hybrid Systems capture the mixed continuous and discrete behaviour.

Linear Hybrid Automaton (LHA)

Definition. A linear hybrid automaton (LHA) H is a tuple (Q, E, \mathbb{R}^n , Flow, Inv, Grd)

- * Q is a finite set of modes,
- * $E \in Q \times Q$ is a transition relation,
- * Flow: $Q \longrightarrow \mathbb{R}^n$ is the flow function,
- * Inv: $Q \longrightarrow \text{cpoly}(n)$ is the invariant function, and
- * Grd: $E \longrightarrow \text{cpoly}(n)$ is the guard function, where cpoly(n) is the set of compact and convex polyhedral sets over \mathbb{R}^n .

LHA sample

Execution

LHA sample

Execution

- We consider non deterministic linear hybrid automata
- * The LHA features piecewise-linear executions

LHA sample

Execution

- * We consider non deterministic linear hybrid automata
- * The LHA features piecewise-linear executions

Piecewise-linear function

Definition. $f: [0,T] \longrightarrow \mathbb{R}^n$ is an **m-piecewise-linear** (m-PWL) **function** if

- * $f \equiv p_1, p_2,..., p_m$ sequence of m affine pieces of the form $p_i(t) = a_i t + b_i$, where:
 - * \mathbf{a}_i is the slope(p_i) and \mathbf{b} is the initial value
 - * $f(t) = p_i(t)$ for $t \in dom(p_i)$
 - * *f* is continuous

Data: Piecewise-linear approximation

Time series over-approximation

- Douglas-Peucker line simplification algorithm
- * Linear regression
- Hakimi-Schmeichel algorithm

Canonical linear hybrid automaton

Definition. Let f be an n-dimensional PWL function. Then, the **canonical automaton** of f is defined as $H_f = (Q, E, \mathbb{R}^n$, Flow, Inv, Grd) with

- * $Q = \{q_a : a \in \mathbb{R}^n, \exists p \in pieces(f) \text{ with slope}(p) = a\},$
- * $E = \{ (q_a, q_{a'}) \in Q \times Q : \exists p, p' \in pieces(f) \text{ adjacent, slope}(p) = a, slope(p') = a' \}$
- Flow $(q_a) = a$,
- * Inv(q_a) = convex_hull ($\{img(p) : p \in pieces(f), slope(p) = a\}$), and
- * Grd($q_a,q_{a'}$) = convex_hull ({end_point(p) : \exists p, p' \in pieces(f) adjacent, slope(p) = a, slope(p') = a'})

Canonical automaton H_f

 $slope(p_1) = 1$, $slope(p_2) = 0$, $slope(p_1) = 1$

Canonical linear hybrid automaton

Definition. Let f be an n-dimensional PWL function. Then, the **canonical automaton** of f is defined as $H_f = (Q, E, \mathbb{R}^n$, Flow, Inv, Grd) with

- * $Q = \{q_a : a \in \mathbb{R}^n, \exists p \in pieces(f) \text{ with slope}(p) = a\},$
- * $E = \{ (q_a, q_{a'}) \in Q \times Q : \exists p, p' \in pieces(f) \text{ adjacent, slope}(p) = a, slope(p') = a' \}$
- Flow $(q_a) = a$,
- * Inv(q_a) = convex_hull ($\{img(p) : p \in pieces(f), slope(p) = a\}$), and
- * Grd($q_a,q_{a'}$) = convex_hull ({end_point(p) : \exists p, p' \in pieces(f) adjacent, slope(p) = a, slope(p') = a'})

 $slope(p_1) = 1$, $slope(p_2) = 0$, $slope(p_1) = 1$

Canonical automaton H_f

Given a PWL function f, f is an execution of H_f

Synthesis Problem

Synthesis problem

Given a finite set of PWL functions F and a value $\varepsilon \in \mathbb{R}_{\geq 0}$, construct an LHA H that ε -captures every function $f \in F$.

Definition. Given a PWL function f and a value $\varepsilon \in \mathbb{R}_{\geq 0}$, we say that an LHA H ε-captures f if there exists an execution σ in H with $d(f, \sigma) \leq \varepsilon$.

 ε is a trade-off between the size and the precision of the model.

Specifications

We solve the synthesis problem for two different specifications, in addition to H ϵ -capturing every function f in F:

Synchronous specification

Asynchronous specification

- * H ε -captures every function f in F
- * *H* switches synchronously with the functions in *F*

- * H ε -captures every function f in F
- * *H* switches synchronously with the functions in *F*

- * H ε -captures every function f in F
- * *H* switches synchronously with the functions in *F*

SMT-based synthesis approach

- * For every function f in F, construct a PWL function g satisfying the specification with ℓ different slopes:
 - * $g \equiv q_1,...,q_m$
 - * Switching times of g are the same as switching times of f: $t_0,...,t_m$
 - * Switching points of g are $\mathbf{y}_0,...,\mathbf{y}_m$ and they are ε -close to switching points of f, $\mathbf{x}_0 = f(t_0),...,\mathbf{x}_m = f(t_m) \longrightarrow \text{Expressed as } \mathbf{y}_j \in X_j$
 - * $\mathbf{b}_1 = \text{slope}(\mathbf{q}_1), ..., \mathbf{b}_m = \text{slope}(\mathbf{q}_m) \text{ with } \ell \text{ different values } (\mathbf{c}_1, ..., \mathbf{c}_{\ell})$

$$\phi_{f,\varepsilon}(\ell) \equiv \bigwedge_{j=1}^{m} \mathbf{y}_j = \mathbf{y}_{j-1} + \mathbf{b}_j(t_j - t_{j-1}) \wedge \bigwedge_{j=0}^{m} \mathbf{y}_j \in X_j \wedge \bigwedge_{j=1}^{m} \bigvee_{k=1}^{\ell} \mathbf{b}_j = \mathbf{c}_k$$

SMT-based synthesis approach

- * For every function f in F, construct a PWL function g satisfying the specification with ℓ different slopes:
 - * $g \equiv q_1,...,q_m$
 - * Switching times of g are the same as switching times of f: $t_0,...,t_m$
 - * Switching points of g are $\mathbf{y}_0,...,\mathbf{y}_m$ and they are ε -close to switching points of f, $\mathbf{x}_0 = f(t_0),...,\mathbf{x}_m = f(t_m) \longrightarrow \text{Expressed as } \mathbf{y}_j \in X_j$
 - * $\mathbf{b}_1 = \text{slope}(\mathbf{q}_1), ..., \mathbf{b}_m = \text{slope}(\mathbf{q}_m) \text{ with } \ell \text{ different values } (\mathbf{c}_1, ..., \mathbf{c}_{\ell})$

$$\phi_{f,\varepsilon}(\ell) \equiv \bigwedge_{j=1}^{m} \mathbf{y}_j = \mathbf{y}_{j-1} + \mathbf{b}_j(t_j - t_{j-1}) \wedge \bigwedge_{j=0}^{m} \mathbf{y}_j \in X_j \wedge \bigwedge_{j=1}^{m} \bigvee_{k=1}^{\ell} \mathbf{b}_j = \mathbf{c}_k$$

SMT-based synthesis approach

Global linear arithmetic formula for *F*

$$\phi_{F,\varepsilon}(\mathscr{C}) \equiv \bigwedge_{f \in F} \phi_{f,\varepsilon}(\mathscr{C})$$

SMT solver

Minimization of the number of different slopes

$$\min_{\ell \leq M} \phi_{F,\varepsilon}(\ell)$$
 is satisfiable

$$M = \#$$
 different slopes in F

$$G = \{g_f : f \in F\}$$

Canonical automaton of G

 H_{G}

SMT-based synthesis approach

Global linear arithmetic formula for *F*

$$\phi_{F,\varepsilon}(\mathscr{C}) \equiv \bigwedge_{f \in F} \phi_{f,\varepsilon}(\mathscr{C})$$

SMT solver

Minimization of the number of different slopes

 $\min_{\ell \leq M} \phi_{F,\varepsilon}(\ell)$ is satisfiable

$$M = \#$$
 different slopes in F

$$G = \{g_f : f \in F\}$$

Canonical automaton of G

 H_{G}

Theorem - SMT-based synthesis

Given a finite set of PWL functions F and a value $\varepsilon \ge 0$, the LHA H_G solves the synthesis problem with minimal number of modes.

- * SMT-based synthesis approach provides an optimal global solution
- Works well with short and low-dimensional input PWL functions
- * Does **not scale** to realistic problem sizes

Alternate approach

Membership-based synthesis approach

- * H ε -captures every function f in F
- * H switches in the time interval determined by the previous and posterior time instants in the functions f in F

- * H ε -captures every function f in F
- * H switches in the time interval determined by the previous and posterior time instants in the functions f in F

- * H ε -captures every function f in F
- * H switches in the time interval determined by the previous and posterior time instants in the functions f in F

- * H ε -captures every function f in F
- * H switches in the time interval determined by the previous and posterior time instants in the functions f in F

Membership-based synthesis approach

Membership-based synthesis approach

- * Systematically iterates over new data
- * A positive initial membership result requires no modification of the LHA
- * Returns a counterexample when the membership in the relaxed LHA fails
- * The **counterexample** is used to not only increment the guards and invariants of the LHA but to **add** discrete modes

Membership

Membership problem

Given an LHA H and a PWL function f, decide if there exists an execution σ in H consistent with f and such that $d(f, \sigma) \leq \varepsilon$

Definition. An execution σ of H is **consistent with** an m-PWL function $f \equiv p_1, ..., p_m$ if σ has m affine pieces and its switching times $t_1, ..., t_{m-1}$ are such that $t_i \in \text{domain}(p_i \cup p_{i+1})$

Membership problem

Given an LHA H and a PWL function f, decide if there exists an execution σ in H consistent with f and such that $d(f, \sigma) \leq \varepsilon$

Definition. An execution σ of H is **consistent with** an m-PWL function $f = p_1, ..., p_m$ if σ has m affine pieces and its switching times $t_1, ..., t_{m-1}$ are such that $t_i \in domain(p_i \cup p_{i+1})$

Membership procedure

- * Construct the ε -tube of f
- * Search for all mode paths π of length m in H
- * Search for **executions** determined by π **satisfying** the problem **constraints**

Membership problem

Given an LHA H and a PWL function f, decide if there exists an execution σ in H consistent with f and such that $d(f, \sigma) \leq \varepsilon$

Definition. An execution σ of H is **consistent with** an m-PWL function $f = p_1, ..., p_m$ if σ has m affine pieces and its switching times $t_1, ..., t_{m-1}$ are such that $t_i \in domain(p_i \cup p_{i+1})$

Membership procedure

- * Construct the ε -tube of f
- * Search for all mode paths π of length m in H
- * Search for **executions** determined by π **satisfying** the problem **constraints**

Analysis core: reachability computation

- Linear hybrid automaton H and PWL function f
- * $\pi \equiv q_1, q_2, q_3, q_4 \text{ mode path in } H$

Basic computation: reachable switching set

- * Consider two ε -tube pieces F_1 and F_2
- * Consider two modes, q_1 and q_2 , their flows, $Flow(q_1)$ and $Flow(q_2)$, and the guard from q_1 to q_2 , G.
- * Consider an initial polyhedral set **P**

 $A^{aux} = POST (P, G_1, Flow(q_1))$

 $A = PRE(X_1, A^{aux}, Flow(q_2))$

 $B^{aux} = PRE(X_1, P, Flow(q_1))$

 $B = POST (Baux, G_2, Flow(q_1))$

 $A^{aux} = POST (P, G_1, Flow(q_1))$

 $A = PRE(X_1, A^{aux}, Flow(q_2))$

 $B^{aux} = PRE(X_1, P, Flow(q_1))$

 $B = POST (Baux, G_2, Flow(q_1))$

 $A^{aux} = POST (P, G_1, Flow(q_1))$

 $A = PRE(X_1, A^{aux}, Flow(q_2))$

 $B^{aux} = PRE(X_1, P, Flow(q_1))$

 $B = POST (Baux, G_2, Flow(q_1))$

$$G_1 = F_1 \cap G$$
 $G_2 = F_2 \cap G$

$$G_2 = F_2 \cap G$$

$$A = PRE(X_1, A^{aux}, Flow(q_2))$$

$$Baux = PRE(X_1, P, Flow(q_1))$$

$$B = POST (Baux, G_2, Flow(q_1))$$

$$G_1 = F_1 \cap G$$
 $G_2 = F_2 \cap G$

$$G_2 = F_2 \cap G$$

$$A = PRE(X_1, A^{aux}, Flow(q_2))$$

$$Baux = PRE(X_1, P, Flow(q_1))$$

$$B = POST (Baux, G_2, Flow(q_1))$$

Reachable switching set

* Compute iteratively the reachable switching set P until the last ε-tube piece:

Last
$$P \neq \emptyset \Rightarrow$$
 membership True

Last
$$P = \emptyset \Rightarrow$$
 membership False

Reachable switching set

* Compute iteratively the reachable switching set P until the last ε-tube piece:

Last
$$P \neq \emptyset \Rightarrow$$
 membership True

Last
$$P = \emptyset \Rightarrow$$
 membership False

If membership of f in H is False, then relax the LHA model.

Relaxation

Given an LHA H and a m-PWL function f, does there exist an execution σ in H consistent with f and such that $d(f, \sigma) \le \varepsilon$ by expanding the guards and invariants of H?

If relaxation of H fails, then modify the discrete structure of the LHA model.

Adaptation

Adaptation problem

Given an LHA H, a PWL function f and a path π in H, construct a path π' by preserving locations in π such that there exists an execution σ in H for π' with $d(f, \sigma) \leq \varepsilon$

Adaptation procedure

- * Recall $f \equiv p_1, ..., p_m$ and $\pi \equiv q_1, ..., q_m$
- Construct $\pi' = \pi$
- Compute iteratively the reachable switching sets P_i until emptiness
- If $P_i = \emptyset$, then:
 - 1. Replace q_i by q'_i in π'
 - 2. Replace q_{i-1} by q'_{i-1} in π'
 - 3. From q_{i-2} to q_1
 - **4.** Until $P_i \neq \emptyset$

Adaptation problem

Given an LHA H, a PWL function f and a path π in H, construct a path π' by preserving locations in π such that there exists an execution σ in H for π' with $d(f, \sigma) \leq \varepsilon$

Adaptation procedure

- * Recall $f \equiv p_1, ..., p_m$ and $\pi \equiv q_1, ..., q_m$
- Construct $\pi' = \pi$
- * Compute iteratively the reachable switching sets P_i until emptiness
- If $P_i = \emptyset$, then:
 - 1. Replace q_i by q'_i in π'
 - 2. Replace q_{i-1} by q'_{i-1} in π'
 - 3. From q_{i-2} to q_1
 - **4.** Until $P_i \neq \emptyset$

Replacement consists of 2 different strategies:

- 1. Existing q'_i with $Flow(q'_i) \cong slope(p_i)$
- 2. New q'_i with $Flow(q'_i) = slope(p_i)$

Adaptation problem

Given an LHA H, a PWL function f and a path π in H, construct a path π' by preserving locations in π such that there exists an execution σ in H for π' with $d(f, \sigma) \leq \varepsilon$

Adaptation procedure

- * Recall $f = p_1, ..., p_m$ and $\pi = q_1, ..., q_m$
- Construct $\pi' = \pi$
- Compute iteratively the reachable switching sets P_i until emptiness
- If $P_i = \emptyset$, then:
 - 1. Replace q_i by q'_i in π'
 - 2. Replace q_{i-1} by q'_{i-1} in π'
 - 3. From q_{i-2} to q_1
 - **4.** Until $P_i \neq \emptyset$

Replacement consists of 2 different strategies:

- 1. Existing q'_i with $Flow(q'_i) \cong slope(p_i)$
- 2. New q'_i with $Flow(q'_i) = slope(p_i)$

Experiments

Synthetic data

Original LHA

Executions of original LHA

Executions of synthesized LHA

Synthesized LHA after 10 iterations

Synthesized LHA after 100 iterations

Cell model

Synthesized LHA

Input PWL functions

Simulations of the synthesized LHA

500

Conclusion

Summary

- * Development of **two automatic approaches for synthesizing** linear hybrid automata from experimental data
- * Nondeterministic guards and invariants
- * Arbitrary number and topology of locations
- * The synthesized automaton reproduce the data up to a **tolerance**
- * Both algorithms well-suited for **online and synthesis-in-the-loop applications**
- * **SMT-based approach minimizes** the size of the **model** but it is feasible for limited data sets
- * Membership-based approach trades-off between size and precision of the model

Questions?