
Foundations of Quantitative Predicate
Abstraction for Stability Analysis of Hybrid

Systems

Pavithra Prabhakar and Miriam Garćıa Soto

IMDEA Software Institute, Madrid, Spain,
{pavithra.prabhakar,miriam.garcia}@imdea.org

Abstract. We investigate the formal connections between “quantita-
tive predicate abstractions” for stability analysis of hybrid systems and
“continuous simulation relations”. It has been shown recently that sta-
bility is not bisimulation invariant, and hence, stronger notions which
extend the classical simulation and bisimulation relations with continu-
ity constraints have been proposed, which force preservation of stability.
In another direction, a quantitative version of classical predicate abstrac-
tion has been proposed for approximation based stability analysis of cer-
tain classes of hybrid systems. In this paper, first, we present a general
framework for quantitative predicate abstraction for stability analysis.
We then show that this technique can be interpreted as constructing
a one dimensional system which continuously simulates the original sys-
tem. This induces an ordering on the class of abstract systems and hence,
formalizes the notion of refinement.

Keywords: Stability Analysis · Simulations/Bisimulations ·Hybrid Sys-
tems · Abstraction-Refinement

1 Introduction

Hybrid systems refer to systems which consist of mixed discrete continuous be-
haviors. They manifest in embedded control systems, which typically consist of
one or more embedded processors controlling physical entities. Stability is a fun-
damental property in control system design. Intuitively, stability captures the
notion that small perturbations to the initial state or input to a system result in
only small variations in the behavior of the system. In this paper, we investigate
the formal foundations for an abstraction based analysis approach for stability
analysis of hybrid systems.

The classical approach to stability analysis in control theory is based on Lya-
punov functions (see, for instance, [10]). Here, stability of a continuous dynamical
system is established by exhibiting a Lyapunov function - a continuously differ-
entiable function on the state-space such that its value is zero at the equilibrium
point and positive everywhere else, and the value of the function decreases along
any execution of the system. A Lyapunov function is analogous to the rank-
ing function for proving termination of discrete programs [5]. The approach has

been extended to hybrid systems in the form of common and multiple Lyapunov
functions [21, 6, 11]. Automated analysis involves starting with a template which
serves as a candidate Lyapunov function, and then using constraint/optimization
solvers to deduce the unknown parameters of the template. For instance, for a
polynomial template with coefficients as parameters, the requirements of Lya-
punov function can be encoded as a sum-of-squares programming problem, which
can be efficiently solved using tools such as SOSTOOLS [16, 15, 14]. One of the
major limiting factors of this approach is the ingenuity required in providing the
right templates; and automatically learning the templates is a challenge which
has not been adequately addressed (except for some recent work [9]). Moreover,
if a template fails to satisfy the conditions of Lyapunov function, then it typically
does not provide insights into the potential reasons for instability or towards the
choice of better templates for succeeding iterations.

To overcome some of the limitations of template based search, an alternate
approach based on abstractions has been investigated [19, 20]. However, the de-
velopment of such an approach is not straightforward. Simulations and bisim-
ulations [13] are the foundational basis for abstraction and minimization based
analysis. Recent results [17, 18] show that stability is not bisimulation invari-
ant, and a simulation relation between two systems does not suffice to preserve
stability. A stronger notion that extends stability with continuity constraints is
proposed and shown to preserve stability. These negative results suggest that
traditional abstraction techniques will need to be modified for stability analysis.

In [19, 20], a quantitative version of predicate abstraction was proposed for
stability analysis. Recall that predicate abstraction [7] constructs a finite graph
which simulates a given system. The finite graph is obtained by partitioning
the state-space of the system into a finite number of regions using a finite set
of predicates. The regions correspond to the nodes of the graph and an edge
between two nodes indicates the possibility of an execution starting from the
region corresponding to the source of the edge to the region corresponding to
its target. Predicate abstraction has been widely applied for safety verification
in the context of both discrete and hybrid systems [4, 2, 3, 22]. However, the
finite graph does not provide useful information towards deciding the stability
of the system. Hence, in [19, 20], a modified abstraction procedure is proposed,
which annotates the finite graph with quantitative information for the purpose
of stability analysis. The edges of the graph are annotated with a weight which
captures the ratio of the distance to the origin of final state to that of the initial
state, of the executions corresponding to the edge. Then stability is inferred by
analyzing certain structural properties about the graph, such as, the absence of
cycles with the product of weights on its edges greater than 1.

In this paper, we investigate the formal foundations for the quantitative pred-
icate abstraction proposed in [19, 20]. First, we present a general framework for
quantitative predicate abstraction and identify conditions on the hybrid system
and the predicates for which the approach is sound. Next, we establish a formal
connection between the abstract weighted graph and the concrete hybrid system
using the notion of continuous simulations. For this, we interpret a weighted

graph as representing a one-dimensional hybrid system whose executions follow
the edges in the graph and satisfy the weight constraints on them. We show
that the one-dimensional hybrid system representing the weighted graph “con-
tinuously simulates” the concrete hybrid system from which the graph is con-
structed. This establishes a partial ordering on the abstract weighted graphs,
and formalizes the notion of refinement.

2 Preliminaries

Sets of numbers. Let R, R≥0 and N denote the set of real numbers, non-negative
real numbers and natural numbers, respectively. We use [n] to denote the set
{0, · · · , n}. We use a superscript∞ to indicate that∞ is included in the set. For
example, R∞≥0 denotes the set R≥0 ∪{∞}. Given a subset I ⊆ R, last(I) denotes
the least upper bound of I in R∞.

Euclidean space Rn. Given x ∈ Rn, let (x)i denote the i-th component of x. Let
||x|| denote the Euclidean norm of x, that is, [

∑
i(x)2i]

1/2. Given ε ≥ 0 and x ∈ Rn,
Bε(x) denotes the open ball of radius ε around x, that is, Bε(x) = {y | ||x−y|| < ε}.
Given a finite set Q, we extend the metric on Rn to an extended pseudo-metric
on Q×Rn as follows: The distance between (q1, x2), (q2, x2) ∈ Q×Rn, denoted
||(q1, x1)− (q2, x2)||, is given by, ||x1−x2||. Further, ||(q, x)|| = ||x|| will denote the
norm of (q, x).

Functions. Let dom(f) denote the domain of a function f . Given A,B ⊆ Rn.
Given a function f : A → B, and a set A′ ⊆ A, we use f(A′) to denote the set
{b | ∃a ∈ A′, f(a) = b}. For an element b ∈ B, the inverse of f at b, denoted
f−1(b), is the set {a ∈ A : f(a) = b}. Given a function f : A → B, where A is
equipped with a total ordering with a least element 0 and a difference operator
(a − b when a > b), we define ft and f t to be the function f restricted to the
domain up to t and to the domain starting from t. More precisely, ft is the
function with domain {t′ ∈ A | t′ ≤ t} and ft(t

′) = f(t) for all t′ ∈ dom(ft).
Similarly, f t is the function with domain {t′ ≥ 0 | ∃t′′ ∈ A, t′′ ≥ t, t′′ − t = t′}
and f t(t′) = f(t′′), where t′′ − t′ = t, for all t′ ∈ dom(f t).

Set-valued function. A set-valued function R : A B is a function which maps
every element of A to a set of elements in B. Given A′ ⊆ A, R(A′) = ∪a∈A′R(a).
Every relation R ⊆ A×B can be interpreted as a set-valued function from A to
B, where for any a ∈ A, R(a) = {b | (a, b) ∈ R}. We interchangeably use R to
represent both the relation and the set-valued function it represents. The inverse
of R, denoted R−1, is the set {(b, a) | (a, b) ∈ R}.

A set-valued function R : A B is said to be continuous at a point a ∈ A if

∀ε > 0,∃δ > 0 such thatR(Bδ(a)) ⊆ Bε(R(a)).

Sequences. A sequence over a set A is a function S : D → A, where D = [n] for
some n, or D = N. The size of the sequence S, denoted |S|, is n if D = [n], in
which case S is said to be a finite sequence, and∞, otherwise. We also represent
S by enumerating its elements as in S(0), S(1),

Graphs. A graph G is a triple (V,L,E), where V is a finite set of vertices, L a
finite set of labels and E ⊆ V ×L× V is a finite set of edges. A path of a graph
is a finite or infinite sequence of vertices and edges π = v0e0v1e1 A cycle is
a finite path where the first and the last vertices are the same; and it is simple
if all the vertices except the last are distinct.

A weighted function is an extension of a graph with a weighting function
on the edges. A weighted graphG = (V,L,E,W) where (V,L,E) is a graph
and W : E → R∞≥0 is a weighting function. The weight of a finite path π is
the product of the weights on the edges. Hence, given π = v0e0v1e1 . . . envn,
W (π) = Πn

i=0W (ei). The maximum weight value of the graph, denoted MW(G),
is max

e∈E
W (e).

Linear expressions, homogeneity. A linear expression is an expression of the
form a ·x+b, where a ∈ Rn, x is a tuple of n-variables and b ∈ R; and it is called
homogeneous if b is the zero vector. Given a linear expression η := a · x + b, it
defines a function [[η]] : Rn → R where given a valuation v ∈ Rn, [[η]] maps it to
the value a · v + b. A linear constraint or predicate c is given by η ∼ 0, where η
is a linear expression and ∼ is a relational operator in {<,6,=}. Let [[c]] denote
the set of all v ∈ Rn such that [[η]](v) ∼ 0, where c is given by η ∼ 0. Given a set
of linear constraints C, it defines the set P = ∩c∈C [[c]] denoted [[C]]. A convex
polyhedral set is a set defined by a finite set of linear constraints C.

Polyhedral partition. A partition P of Rn into convex polyhedral sets is a finite
set of convex polyhedral sets {P1, . . . , Pk} such that ∪ki=1Pi = Rn and for each
i 6= j, Pi ∩ Pj = ∅.

3 Hybrid Systems

In this section, we present a semantic model for hybrid systems. We then define
a concrete class of hybrid system, namely, piecewise linear dynamical systems,
which we use in the sequel to illustrate the theoretical concepts.

3.1 A semantic definition of hybrid systems

Hybrid systems are systems exhibiting mixed discrete and continuous behaviors.
We present a semantic model of a hybrid system as consisting of discrete tran-
sitions and continuous trajectories. For a concrete specification formalism, see
the hybrid automaton model [1, 8]. Let us fix a finite set Q and a set X = Rn,
for some n. Given an element (q, x) ∈ Q×X, [q, x]D = q and [q, x]C = x.

Trajectories. A trajectory over (Q,X) is a function τ : I → Q × X, where I is
either [0, T] for some T ∈ R≥0 or [0,∞), such that [τ]D is finitely varying ([τ]D
restricted up to time t has finite number of discontinuities for any t ∈ [0, T]) and
[τ]C is a continuous function. We denote the set of all trajectories over (Q,X)
by Traj(Q,X).

The last time of a trajectory τ , ltime(τ), is last(dom(τ)). The first state of the
trajectory τ , denote fstate(τ), is τ(0), and if ltime(τ) <∞, then the last state of
τ , denoted lstate(τ), is τ(ltime(τ)). The set of states of τ , denoted States(τ), is
the set {τ(t) | t ∈ dom(τ)}. Given a time t ∈ dom(τ), the prefix of τ up to time
t is the trajectory τt and the suffix of τ from time t is τ t.

Transitions. A transition over a pair (Q,X) is a pair ι = ((q1, x1), (q2, x2)) ∈ (Q×
X)×(Q×X) . We denote the set of all transitions over (Q,X) by Trans(Q,X). For
a transition ι = ((q1, x1), (q2, x2)), ltime(ι) = 0, fstate(ι) = (q1, x1), lstate(ι) =
(q2, x2) and States(ι) = {(q1, x1), (q2, x2)}.

Hybrid system definition. A hybrid system H is a tuple (Q,X, Σ,∆), where:

– Q is a finite set of control locations;

– X = Rn, for some n, is the continuous state-space;

– Σ ⊆ Trans(Q,X) is a set of transitions; and

– ∆ ⊆ Traj(Q,X) is a set of trajectories.

The dimension of H is n and the state-space, States(H), is Q×X.

Executions. An execution of a hybrid system is a finite or infinite sequence of
transitions and trajectories. An execution of a hybrid system H is a sequence
σ : D → Σ ∪∆, such that for all 0 6 i < |σ|, lstate(σ(i)) = fstate(σ(i+ 1)), and
if σ is an infinite sequence then

∑
i:σ(i)∈∆ last(dom(σ(i))) = ∞. Let Exec(H)

denote the set of all executions of H.

Let fstate(σ) = fstate(σ(0)) and if |σ| < ∞ and last(σ(|σ|)) < ∞, then
lstate(σ) = lstate(σ(|σ|)). Let States(σ) = ∪i∈dom(σ) States(σ(i)).

Hybrid time domain. We define a hybrid time domain for an execution, so that
we can interpret the execution as a function from this domain to the states of
the hybrid system. Given an execution σ : D → Σ ∪ ∆, the hybrid time do-
main of σ, denoted htd(σ), is the set {(i, 0) | i ∈ dom(σ), σ(i) ∈ Σ} ∪ {(i, t) | i ∈
dom(σ), σ(i) ∈ ∆, t ∈ dom(σ(i))}. The execution σ can be represented as a func-
tion fσ from htd(σ) to States(H), where for (i, t) ∈ htd(σ), fσ(i, t) = fstate(σ(i))
if σ(i) ∈ Σ, and σ(i)(t) otherwise. Note that there is a bijection from the set of
executions to the functions they represent. Given two points (i1, t1) and (i2, t2)
in a hybrid time domain, we define an ordering between them as (i1, t1) < (i1, t2)
if i1 < i2, or i1 = i2 and t1 < t2. We then denote by σ(i,t) and σ(i,t), prefix of σ
up to (i, t) and suffix of σ from (i, t), respectively. σ(i,t) is given by the function

(fσ)(i,t) and σ(i,t) is given by the function (fσ)(i,t).

Splitting trajectories and executions. We say that (τ1, τ2) is a splitting of a tra-
jectory τ , denoted τ = τ1 ◦ τ2, if there exists t ∈ dom(τ) such that τ1 = τt and
τ2 = τ t. Similarly, (σ1, σ2) is a splitting of an execution σ, denoted σ = σ1 ◦ σ2,
if there exists an (i, t) ∈ htd(σ) such that σ1 = σ(i,t) and σ2 = σ(i,t). Note that
splitting is associative that is σ = (σ1 ◦ σ2) ◦ σ3 if and only if σ = σ1 ◦ (σ2 ◦ σ3).
Hence, for a splitting of σ or τ into n parts, we do not need to specify the split-
ting order. Further, we write σ = σ1 ◦ σ2 ◦ . . . to denote a splitting of σ into
infinitely many parts, that is, there exist σ′1, σ

′
2, . . ., such that σ = σ1 ◦ σ′1 and

for i ≥ 1, σ′i = σi+1 ◦ σ′i+1.

3.2 Illustration using piecewise linear dynamical systems

Next, we instantiate the semantic model with a concrete class of hybrid systems,
namely, piecewise linear dynamical systems. These are systems in which the
state-space is partitioned into a finite set of convex polyhedral sets, each of
which is associated with a linear dynamical system.

Definition 1. An n-dimensional piecewise linear dynamical system (PLDS)M
is a pair (P, F), where P is a finite partition of Rn into convex polyhedral sets
and F : P → Rn×n is a function associating an n×n matrix with every element
of the partition.

An n-dimensional PLDS,M = (P, F), is represented as a hybrid system with
the tuple (Q,X, Σ,∆), where

– the control location set Q is equal to the partition P,
– the continuous state-space X is equal to Rn,
– the set of transitions Σ is contained in {((P1, x), (P2, x)) ∈ (Q×X)×(Q×X) :
P1 6= P2, Closure(P1) ∩ Closure(P2) 6= ∅} and

– the set of trajectories ∆ includes every τ : I → P×Rn such that there exists
P ∈ P with [τ]D(t) = P and [τ̇]C = F (P) · [τ]C for all t ∈ dom(τ).

Example 1. Consider the following linear dynamical systems:(
ẋ
ẏ

)
=

(
0 1
−0.1 0

)(
x
y

)
and

(
ẋ
ẏ

)
=

(
0 1
−4 0

)(
x
y

)
where x = x(t) and y = y(t). Let us call the matrices A and B, respectively.
The phase portraits for the systems are shown in Figure 1.

Next, we define two piecewise linear dynamical systems M1 and M2, where
M1 follows the dynamics associated with B in the positive quadrant and the
quadrant diagonally opposite to it, and the dynamics A in the other two quad-
rants. M2 follows A in the quadrants in which M1 follows B, and follows B in
the quadrants in which M1 follows A. A sample of execution for the systems
M1 and M2 is depicted in Figure 2(a) and 2(b), respectively. Each of the exe-
cutions consist of four trajectories each of which belongs to a particular location
(a quadrant), and discrete transitions which change locations at the boundaries
of the quadrants.

x

y

Wednesday, May 15, 2013

(a) ẋ = Ax

x

y

y

Wednesday, May 15, 2013

(b) ẋ = Bx

Fig. 1. Phase portraits

x

y

x

Wednesday, May 15, 2013

(a) System M1

x

y

Wednesday, May 15, 2013

(b) System M2

Fig. 2. Sample executions

4 Lyapunov and Asymptotic Stability

In this section, we define two classical notions of stability in control theory for
hybrid systems, namely, Lyapunov and asymptotic stability. We will focus on
stability with respect to an equilibrium point. For simplicity of presentation, we
consider the origin in the continuous state-space of the hybrid system to be the
equilibrium point. For an n-dimensional hybrid system H, we use 0H to denote
the origin 0̄ ∈ Rn.

Lyapunov stability captures the notion that small perturbations in the initial
state of the system result in only small perturbations of the eventual behaviors.

Definition 2. A set of executions S ⊆ Exec(H) is said to be Lyapunov stable
if for every ε > 0, there exists a δ > 0 such that for every execution σ ∈ S with
[fstate(σ)]C ∈ Bδ(0H), [States(σ)]C ⊆ Bε(0H).

A hybrid system H is said to be Lyapunov stable, if Exec(H) is Lyapunov
stable.

Asymptotic stability requires convergence in addition to Lyapunov stability.
An execution σ of H is said to converge to 0H, denoted Conv(σ, 0H), if for every
ε > 0, there exists a pair (i, t) ∈ htd(σ) such that [States(σ(i,t))]C ⊆ Bε(0H).

Definition 3. A set of executions S ⊆ Exec(H) is said to be asymptotically
stable if it is Lyapunov stable and there exists a δ > 0 such that every σ ∈ S
with [fstate(σ)]C ∈ Bδ(0H), Conv(σ, 0H) holds.

A hybrid system H is said to be asymptotically stable if Exec(H) is asymptoti-
cally stable.

In Example 1, the dynamics of the linear systems of Figure 1(a) and 1(b)
describe executions moving along an ellipsoid around the origin, the equilibrium
point. Both systems are Lyapunov stable, since the executions remain close to
the equilibrium point when they start close to the equilibrium point. For PLDS
M1 depicted in Figure 2(a), the executions eventually approach the equilibrium
point, hence, M1 is asymptotically stable. On the other hand, the system M2

exhibits instability, since its executions, represented in Figure 2(b), diverge with
respect to the equilibrium point.

5 Quantitative Predicate Abstraction

In this section, we present a quantitative predicate abstraction technique for an-
alyzing stability of hybrid systems, which generalizes the abstraction techniques
in [19] and [20] for the class of piecewise constant derivative systems and poly-
hedral switched systems, respectively. In particular, we identify a condition on
the interaction between the hybrid system and the predicates used in the ab-
straction, which renders the method sound. We illustrate the approach on the
class of piecewise linear dynamical systems.

5.1 Weighted graphs as quantitative abstractions

In the context of safety verification, a finite abstraction of a concrete system
is constructed from a partition of the state space of the system into a finite
number of regions. The nodes in the finite abstraction correspond to the regions
and the edges between two nodes capture the existence of an execution in the
concrete system starting from a state in the region corresponding to the first
node to a state in the region corresponding to the second node. This defines an
abstract system, a finite graph, which over-approximates the behaviors of the
concrete system, and hence, safety of the abstract system implies the safety of
the concrete system.

However, for stability verification, it does not suffice to merely construct a
system which over-approximates the behaviors of the concrete system. We need
to capture some quantitative information about the evolution of the distance of
the states to the origin along an execution. Hence, we annotate the finite graph
with weights. More precisely, we interpret the nodes in the abstract graph as
regions, an edge in the graph as the existence of a potential execution from one

region to other evolving through a third region, and the weights as the scaling
in the distance to the origin of the execution as it traverses from the first region
to the second one.

We need some auxiliary constructs in the construction of the weighted graph.
Let H = (Q,X, Σ,∆) be a hybrid system and P1, P2, P ⊆ States(H). We define
a predicate which represents pairs of states (s1, s2) such that there exists a
trajectory which enters P through P1 at s1, remains in P for sometime and
exits P through P2 at s2. More precisely,

ReachRelCH(P1, P, P2) := {(s1, s2) ∈ P1 × P2 | ∃τ ∈ ∆ : fstate(τ) = s1,

lstate(τ) = s2 and τ(t) ∈ P for all 0 < t < ltime(τ)}.

Also, we define a predicate containing the pairs of states (s1, s2) such that there
exists a transition from P1 to P2 where s1 is contained in P1 and s2 in P2, it is

ReachRelDH(P1, P2) := {(s1, s2) ∈ P1 × P2 | ∃ι = (s1, s2) ∈ Σ}.

Definition 4. A weighted graph G = (V, V ∪ {γ}, E,W) is a quantitative ab-
straction of a hybrid system H with respect to an abstraction function α :
States(H)→ V if the following hold. Given v1, v2 ∈ V , define

ZC(v1, v, v2) = ReachRelCH(α−1(v1), α−1(v), α−1(v2)).

ZD(v1, v2) = ReachRelDH(α−1(v1), α−1(v2)).

– Edge condition: For every v1, v2 ∈ V ,

ZC(v1, v, v2) 6= ∅ ⇒ (v1, v, v2) ∈ E,ZD(v1, v2) 6= ∅ ⇒ (v1, γ, v2) ∈ E.

– Weight conditions:
• For every edge e = (v1, v, v2).

v 6= γ ⇒ sup
(s1,s2)∈ZC(v1,v,v2)

||s2||
||s1||

≤W (e).

v = γ ⇒ sup
(s1,s2)∈ZD(v1,v2)

||s2||
||s1||

≤W (e).

Note that even when α is fixed, there are several weighted graphs quantita-
tively abstracting the concrete system. However, there is a minimal graph which
quantitatively abstracts the concrete system with respect to a given α.

Definition 5. A minimal quantitative abstraction G of a hybrid system H with
respect to an abstraction function α satisfies the implication on the edge condi-
tions and the inequality in the weight conditions in both directions.

Next, we identify a condition on the abstraction function α and the hybrid
system H which will ensure that the abstract graph captures all the executions
of H.

Definition 6. A hybrid system H is well-behaved with respect to an abstrac-
tion function α : States(H) → V if for every continuous trajectory τ of H, the
function α ◦ τ is finitely varying on V .

From now on, we assume that the following assumption holds.

Assumption 1 The hybrid system is well-behaved with respect to the choice of
the quantitative predicate abstraction.

The following theorem provides efficiently verifiable conditions on the ab-
stract weighted graph which imply stability of the concrete system.

Theorem 1. Let G = (V,L,E,W) be a quantitative abstraction of a hybrid
system H which satisfies Assumption 1. Consider the following conditions:

G1 there is no edge e in G with infinite weight, that is, W (e) < +∞,∀e ∈ E,
G2 every simple cycle π of G satisfies W (π) 6 1 and
G3 every simple cycle π of G satisfies W (π) < 1.

Then:

– H is Lyapunov stable if conditions G1 and G2 hold and
– H is asymptotically stable if conditions G1 and G3 hold.

We defer the proof of Theorem 1 to Section 6.3. Once we establish a connec-
tion between quantitative abstractions and continuous simulations, the proof of
Theorem 1 is straightforward. We briefly explain the motivation for the condi-
tions G1 −G3 in the theorem. For every execution of the hybrid system, there
is a path in the graph such that the weights on the path provide an upper bound
on how far the execution deviates with respect to the origin. Condition G1 states
that the executions which eventually remain within a particular region do not
diverge; while Conditions G2 (and G3) capture the fact that the executions
which switch between regions infinitely often do not diverge (do converge).

Remark 1. One of the main highlights of the quantitative abstraction based
stability analysis is that the method returns a counter-example in the event of
a failure, indicating a potential reason for instability. For instance, a cycle of
weight greater than one in the weighted graph expresses the possible existence
of an infinite diverging execution.

5.2 Illustration on PLDS

In this section, we illustrate the quantitative abstraction based stability analysis
on the class of piecewise linear dynamical systems. We use as the abstraction
function a polyhedral partition of the state-space, and show that piecewise linear
dynamical systems are well-behaved with respect to the polyhedral partition. We
then illustrate the abstraction procedure on a simple example.

Let us fix an n-dimensional PLDS M = (P, F). Recall that for this class of
hybrid systems, the control location set is the partition P and the continuous
state-space is Rn. A state is represented as (P, x) ∈ P×Rn. Fix a set of predicates
on Rn, which results in a partition P ′. The abstraction function is then given
by αP,P′((P, x)) = (P, P ′), where x ∈ P ′ and P ′ ∈ P ′. Next, we observe that
a PLDS is well-behaved with respect to the abstraction function defined above,
hence Assumption 1 holds.

Proposition 1. Given a square matrix A ∈ Rn and a variable t ∈ R, the expo-
nential matrix eAt is a square matrix whose elements are linear combinations of
terms of the form ctkeat cos(bt+ d), where a, b, c, d ∈ R and 0 6 k 6 n− 1 is an
integer.

Proposition 2. Given an n-dimensional PLDSM = (P, F) and a partition P ′
of Rn, M is well-behaved with respect to αP,P′ .

Proof. Consider a trajectory τ : [0, T] → P × Rn in M such that for all t,
[τ(t)]D = P , and [τ(t)]C = eF (P)tx0, where P ∈ P and x0 is the initial continuous
state of the trajectory. Define B to be the maximum of bT + d, where cos(bt +
d) appears in the exponential matrix eF (P)t as given by Proposition 1. It is
shown in [12], that the first order theory of reals with addition, multiplication,
exponentiation and restricted cos and sin functions is o-minimal. This implies
that the subset of reals defined by any formula with one free variable in the logic
can be expressed as a finite union of intervals. Restricted cos and sin functions are
those which are identical to cos and sin in a finite interval, and 0 everywhere else.
Hence, we have that 〈R,6,+, ·, e, sin |[0,B], cos |[0,B]〉 is an o-minimal structure.

Next, we show that the trajectory enters and leaves a region of P ′ only
finitely many times. Since, the number of regions is finite, this establishes that
τ is finitely varying. Fix a polyhedron P ′ ∈ P ′. The following first-order logic
formula ϕ(t) over 〈R,6,+, ·, e, sin |[0,B], cos |[0,B]〉 defines the set of all times at
which the trajectory τ is in P ′.

ϕ(t) = ∃x(x ∈ P ′ ∧ 0 6 t 6 T ∧ x = eF (P)tx0)

The last conjunct is expressible in the language due to Proposition 1. Further,
though the sin and cos are restricted, they only take arguments in the range
[0, B], due to t being restricted to the interval 0 ≤ t ≤ T and the way B is
computed. Hence, due to o-minimality, the times at which τ is in P ′ is a finite
union of intervals, and we obtain that τ exits P ′ only finitely many times in the
interval [0, T].

The hybrid systemM is well-behaved with respect to αP,P′ , since, any finite
restriction of a trajectory (with a possibly infinite domain) has finite number of
discontinuities with respect to P ′. �

Remark 2. Note that the above proof extends to any partition which is definable
in the theory with addition, multiplication and exponentiation.

x

y

Wednesday, May 15, 2013

Figure 7: Sample execution of System M1

f4

f1

f2

f3

0.52

0.340.52

0.34

Figure 8: Annotated Abstract Graph for System M1

f4

f1

f2

f3

3.2

2.13.2

2.1

Figure 9: Annotated Abstract Graph for System M2

Figure 10: SpaceX: Graphical representation of the
reach set

(a) Weighted graph G1

x

y

Wednesday, May 15, 2013

Figure 7: Sample execution of System M1

f4

f1

f2

f3

0.52

0.340.52

0.34

Figure 8: Annotated Abstract Graph for System M1

f4

f1

f2

f3

3.2

2.13.2

2.1

Figure 9: Annotated Abstract Graph for System M2

Figure 10: SpaceX: Graphical representation of the
reach set

(b) Weighted graph G2

Fig. 3. Quantitative Abstractions

Next, we illustrate the quantitative abstraction construction and analysis on
the systems M1 and M2 in Example 1. The graphs G1 and G2 in Figure 3
are quantitative predicate abstractions of M1 and M2 respectively. The state-
space is partitioned by using the linear inequalities {x = 0, x > 0, x < 0, y =
0, y > 0, y < 0}. This partition generates 9 different regions, the four quadrants,
the four positive and negative axes, which correspond to the boundary of the
quadrants, and the origin. In this example, a simple construction of the weighted
graph is presented, where the nodes corresponding to the quadrants and origin
are eliminated because of redundancy. In practice, we may need to prune the
graph to obtain useful results. The nodes f1 and f3 correspond to the positive
and negative x axes, respectively, and the nodes f2 and f4 to the positive and
negative y axes, respectively. There are several methods to compute weights
based on reachable set computation for linear dynamics.

Note that G1 satisfies conditions G1 and G2 which implies Lyapunov stabil-
ity ofM1. On the other hand, G2 does not satisfy conditions G2 or G3 . Though
we cannot conclude instability ofM2, G2 returns a counterexample, namely, the
cycle f1f2f3f4f1 with weight > 1, explaining a potential reason for instabil-
ity. The counterexample suggests that an infinite diverging execution is feasible
by following the cycle infinitely many times. Such an execution exists in this
case, for instance, repeating a scaled version of the execution shown in Figure
2(b) infinitely. However, in general, a diverging execution might not exist, as the
counter-example could be due to the conservativeness of the abstraction.

6 Foundations of quantitative abstraction

In this section, we present the connection between quantitative abstractions and
continuous simulations. First, we present an overview of continuous simulations
between hybrid systems and show that they preserve stability. Next, we interpret
a quantitative abstraction as a one dimensional hybrid system, which continu-
ously simulates the original one, and hence, preserves stability. We use these
results to provide a proof of Theorem 1. The connection between quantitative

abstraction and continuous simulations also enables us to define a partial order-
ing on the abstract weighted graphs, thus, formalizing the notion of refinement.

6.1 Continuous simulations and stability preservation

Pre-orders on systems which preserve properties of interest form the basis of any
abstraction refinement framework. Simulations [13] are the classical pre-orders
on systems which preserve various discrete-time properties including safety and
the safe fragments of several branching time properties. For instance, if a system
H2 simulates system H1 and H2 is safe, then H1 is safe as well.

Definition 7. Given two hybrid systems H1 and H2, a binary relation R ⊆
(Q1×X1)× (Q2×X2) is said to be a simulation from H1 to H2, denoted H1 �R
H2, if the following hold for every (s1, s2) ∈ R:

– for every transition (s1, s
′
1) ∈ Σ1, there exists a transition (s2, s

′
2) ∈ Σ2 such

that (s′1, s
′
2) ∈ R; and

– for every trajectory τ1 ∈ ∆1 with fstate(τ1) = s1, there exists a trajectory
τ2 ∈ ∆2 with fstate(τ2) = s2 such that dom(τ1) = dom(τ2) and for all
t ∈ dom(τ1), (τ1(t), τ2(t)) ∈ R.

However, it was observed in [17] that simulations do not suffice to preserve
stability. Instead, a stronger notion which extends simulations with continuity
constraints was proposed and shown to preserve stability. Below we present a
simplified version of the definition of the relation and the stability preservation
theorem in [17], as required for our setting.

Definition 8. A binary relation R is a continuous simulation from H1 to H2,
denoted H1 �Rc H2 if

A1 R a simulation from H1 to H2;
A2 R and R−1 are continuous at 0H1

and 0H2
, respectively;

A3 if R((q1, x1), (q2, x2)), then x1 = 0H1 if and only if x2 = 0H2 ; and
A4 ∃γ > 0,∀(q, x), [(q, x)]C ∈ Bγ(0H1

)⇒ R(q, x) 6= ∅.

Condition A3 states that the states corresponding to the origin in one system
are mapped to the states corresponding to the origin in the other. Condition A4
states that the image of the relation R is not empty in a small neighborhood
around the origin.

Theorem 2 ([17]). Let R be a continuous simulation from H1 to H2. Then:

– H2 is Lyapunov stable implies H1 is Lyapunov stable.
– H2 is asymptotically stable implies H1 is asymptotically stable.

This result shows that continuous simulations preserve both Lyapunov sta-
bility and asymptotic stability. The proof of the theorem is similar to that of the
proof in [17].

6.2 Quantitative predicate abstraction as a one-dimensional hybrid
system

A predicate abstraction procedure constructs a simpler system which simulates
the original system. Hence, it preserves all properties preserved by simulations.
In order to deduce a similar result for stability analysis, we need to formally
relate the hybrid system with a quantitative abstraction of the system. Hence,
we interpret the weighted graph as representing a simple one dimensional hybrid
system, and show that this one dimensional system continuously simulates the
original system. First, we define the one-dimensional system from the graph and
specify conditions which characterize their stability properties.

Given a weighted graph G, we construct a one-dimensional hybrid system
HG. The discrete locations of HG correspond to the nodes of G. Transitions
correspond to pair of states such that scaling associated with continuous states is
bounded by the weight of the edge corresponding to the discrete states. Similarly,
a trajectory ofHG corresponds to following a finite or infinite path in G such that
the scaling of any prefix of the trajectory corresponding to a prefix of the path is
bounded by the weight associated with the prefix of the path. Furthermore, the
scalings associated with any prefix of the trajectory is bounded by the maximum
weight of an edge in the graph.

Definition 9. Given an edge e = (v1, v, v2) of a weighted graph G = (V, V ∪
{γ}, E,W), we define the set of trajectories corresponding to it, denoted Traj(e),
as the set of all finite trajectories τ over (V,R) satisfying:

– [τ(0)]D = v1;
– ∃v,∀0 < t < last(dom(τ)), [τ(t)]D = v and ||τ(t)||/||τ(0)|| ≤ MW(G); and
– [τ(ltime(τ))]D = v2 and 0 ≤ ||τ(ltime(τ))||/||τ(0)|| ≤W (e).

A weight on an edge in a quantitative abstraction is an upper bound on
the scaling associated with the last time of an execution; however, the scalings
associated with all the intermediate time points are bounded by the weight of
the edge corresponding to the prefixes of the execution. Hence, in Traj(e) we
only allow trajectories such that the scalings associated with the intermediate
points is bounded by the maximum weight of an edge in the graph.

We will also define a set of infinite trajectories which is allowed by the graph.

InfTraj(G) = {τ ∈ Traj(V,R) | ltime(τ) = +∞,∃v ∈ V,

∀t ∈ dom(τ), [τ(t)]D = v, 0 ≤ ||τ(t)||/||τ(0)|| ≤ MW(G)}

Definition 10. Given a weighted graph G = (V, V ∪ {γ}, E,W), we define a
hybrid system HG = (V,R≥0, Σ,∆), where:

Σ = {((v1, r1), (v2, r2)) | (v1, γ, v2) ∈ E, r2/r1 ≤W (v1, γ, v2)}.
∆ = {τ | ∃ finite or infinite splitting τ = τ1 ◦ τ2 ◦ . . ., such that ∀i,
either ∃e = (v1, v, v2) ∈ E, τi ∈ Traj(e) or τi ∈ InfTraj(G)}.

The next theorem characterizes when HG is Lyapunov stable.

Theorem 3. Given a weighted graph G, HG is Lyapunov stable if and only if

C1 G does not contain any edges with infinite weights, that is, W (e) < +∞ for
every edge e of G.

C2 G does not contain simple cycles whose weight is strictly greater than 1, that
is, W (π) ≤ 1 for every simple cycle π of G.

Note that HG constructed above is in general not asymptotically stable,
since InfTraj(G) consists of infinite trajectories which do not converge. Hence
we interpret G as another one-dimensional hybrid system HConv

G which consists
of infinite trajectories remaining within a single region and converging if there
are no infinite weight edges.

InfTrajConv(G) = {τ ∈ Traj(V,R) |Conv(τ, 0)} ∩ InfTraj(G)

HConv
G is same as HG except that InfTraj(G) in the definition of ∆ is replaced

by InfTrajConv(G) if G has no edges with infinite weight.

Theorem 4. Given a weighted graph G, HConv
G is asymptotically stable if and

only if Condition C1 holds and

C3 G does not contain simple cycles whose weight is greater than or equal to 1,
that is, W (π) < 1 for every simple cycle π of G.

6.3 Quantitative predicate abstraction as continuous simulation

Next, we show that there exists a simulation between H and the one-dimensional
systems HG and HConv

G .

Theorem 5. Let G be a quantitative abstraction of H with respect to α. Then
R = {((q, x), (α((q, x)), ||x||)) | (q, x) ∈ States(H)} is a continuous simulation
from H to HG and from H to HConv

G .

Now we are ready to provide a proof of Theorem 1.

Proof of theorem 1. Let us consider a hybrid system H and a quantitative ab-
straction G of H with respect to α. Suppose conditions G1 and G2 hold for G.
We want to prove Lyapunov stability for H. Due to conditions G1 and G2 , The-
orem 3 states that HG is Lyapunov stable. By Theorem 5, we know there exists
a continuous simulation R, defined as in the theorem, from H to HG. Then, by
Theorem 2, we obtain H is Lyapunov stable.

Next, we prove the second part of Theorem 1. Suppose conditions G1 and
G3 hold for G. We want to show asymptotic stability for the hybrid system H.
Since, Conditions G1 and G3 hold, we obtain from Theorem 4 that HConv

G is
asymptotically stable. Then, from Theorem 5, we know that there is a contin-
uous simulation R from H to HConv

G . Finally, from Theorem 2, we obtain H is
asymptotically stable. �

6.4 Refinements

The interpretation of the weighted graph as a one-dimensional system also pro-
vides a natural notion of refinements on the graphs.

Definition 11. Let H1 and H2 be hybrid systems and R a binary relation such
that H1 �Rc H2. A hybrid system H3 is a refinement of H2 with respect to H1,
if there exist binary relations R1 and R2 such that H1 �R1

c H3 �R2
c H2.

Theorem 6. Let H be a hybrid system, and α1 : States(H) → V1 and α2 :
States(H) → V2 be two abstraction functions such that for every v2 ∈ V2 there
exists v1 ∈ V1 with α−12 (v2) ⊆ α−11 (v1). Let G1 and G2 be the minimal quantita-
tive abstractions of H with respect to α1 and α2, respectively. Then:

1. HG1
simulates HG2

.
2. HConv

G1
simulates HConv

G2
.

In particular, HG2 is a refinement of HG1 with respect to H and HConv
G2

is a

refinement of HConv
G1

with respect to H.

Remark 3. Note that Theorem 6 will not be true for arbitrary abstractions HG1

and HG2
. Hence, we enforce minimality, however, this can be relaxed to any

abstraction construction procedure which is monotonic with respect to the ab-
straction functions. A consequence of the theorem is that, it establishes a partial
ordering on the abstract graphs based on a partial ordering on the abstraction
functions. Hence, the ordering on the abstraction functions can be used to ob-
tain refinements of the graphs. For instance, adding more predicates yields a
refinement.

7 Conclusion

In this paper, we presented the formal foundations for the quantitative predi-
cate abstraction based stability analysis by establishing connections with con-
tinuous simulation relations. Here, we have ignored the computational issues
related to the computation of abstractions and refinements. These have been
explored to some extent in [19, 20] for the class of piecewise constant derivative
systems and polyhedral switched systems. Future work will focus on extending
this approach to hybrid systems with richer dynamics. Further, since, a failure to
prove stability returns a potential counter-example, one can build a framework
of counter-example guided abstraction refinement for stability analysis, which
will be explored in the future.

8 Acknowledgement

The research leading to the results in the paper has received funding from
the People Programme (Marie Curie Actions) of the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) under REA grant agreement no.
631622.

References

1. R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In
Hybrid Systems, pages 209–229, London, UK, UK, 1993. Springer-Verlag.

2. R. Alur, T. Dang, and F. Ivancic. Counter-example guided predicate abstraction
of hybrid systems. In Proceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 208–223, 2003.

3. R. Alur, T. Dang, and F. Ivancic. Predicate abstraction for reachability analysis of
hybrid systems. ACM Transactions on Embedded Computing Systems, 5(1):152–
199, 2006.

4. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In Proceedings of the ACM SIGPLAN 2001 Conference
on Programming Language Design and Implementation, PLDI ’01, pages 203–213,
New York, NY, USA, 2001. ACM.

5. B. Cook, A. Podelski, and A. Rybalchenko. Proving program termination. Com-
mun. ACM, 54(5):88–98, 2011.

6. R. Goebel, R. Sanfelice, and A. Teel. Hybrid dynamical systems. IEEE Control
Systems, Control Systems Magazine, 29:28–93, 2009.

7. S. Graf and H. Saidi. Construction of abstact state graphs with PVS. In Proceedings
of the International Conference on Computer Aided Verification, pages 72–83, 1997.

8. T. A. Henzinger. The Theory of Hybrid Automata. In Proceedings of the IEEE
Symposium on Logic in Computer Science, pages 278–292, 1996.

9. J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, and N. Arechiga. Simulation-
guided lyapunov analysis for hybrid dynamical systems. In 17th International
Conference on Hybrid Systems: Computation and Control (part of CPS Week),
HSCC’14, Berlin, Germany, April 15-17, 2014, pages 133–142, 2014.

10. H. K. Khalil. Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ, 1996.

11. H. Lin and P. J. Antsaklis. Stability and stabilizability of switched linear systems:
A survey of recent results. IEEE Transactions on Automatic Control, 54(2):308–
322, 2009.

12. A. M. Lou van den Dries and D. Marker. The elementary theory of restricted ana-
lytic fields with exponentiation. Annals of Mathematics, Second Series, 140(1):183–
205, 1994.

13. R. Milner. Communication and Concurrency. Prentice-Hall, Inc, 1989.

14. E. Möhlmann and O. Theel. Stabhyli: a tool for automatic stability verification
of non-linear hybrid systems. In Proceedings of the International Conference on
Hybrid Systems: Computation and Control, pages 107–112, New York, NY, USA,
2013. ACM.

15. A. Papachristodoulou and S. Prajna. On the construction of Lyapunov functions
using the sum of squares decomposition. In Conference on Decision and Control,
2002.

16. P. A. Parrilo. Structure Semidefinite Programs and Semialgebraic Geometry Meth-
ods in Robustness and Optimization. PhD thesis, California Institute of Technology,
Pasadena, CA, May 2000., 2000.

17. P. Prabhakar, G. E. Dullerud, and M. Viswanathan. Pre-orders for reasoning
about stability. In Proceedings of the International Conference on Hybrid Systems:
Computation and Control, pages 197–206, 2012.

18. P. Prabhakar, J. Liu, and R. M. Murray. Pre-orders for reasoning about stability
properties with respect to input of hybrid systems. In Proceedings of the Interna-
tional Conference on Embedded Software, EMSOFT 2013, Montreal, QC, Canada,
September 29 - Oct. 4, 2013, pages 1–10, 2013.

19. P. Prabhakar and M. G. Soto. Abstraction based model-checking of stability of
hybrid systems. In Proceedings of the International Conference on Computer Aided
Verification, 2013.

20. P. Prabhakar and M. G. Soto. An algorithmic approach to stability verification of
polyhedral switched systems. In American Control Conference, 2014.

21. E. D. Sontag. Input to state stability: Basic concepts and results. In Nonlinear
and Optimal Control Theory, pages 163–220. Springer, 2006.

22. A. Tiwari. Abstractions for hybrid systems. Formal Methods in System Design,
32(1):57–83, 2008.

