
A Compositional Algorithm for Computing a Switched System
Representation of Neural Network Controllers

Miriam García Soto1 and Pavithra Prabhakar2

Abstract— Our broad motivation is to utilize the
large body of work on verification techniques for
switched affine systems towards verification of neural
network-controlled systems. To this end, we explore
the problem of computing a switched affine system
(SAS) representation of neural network-controlled
discrete-time linear dynamical systems by providing a
compositional algorithm that computes the piecewise
affine (PWA) representation of the neural network.
Our algorithm relies on two subroutines - one that
computes the PWA representation of a single layer of
a neural network, and the other that computes the
compositions of PWA representations. We introduce
the concept of a composition ordering represented as a
binary tree that specifies the order in which the layers
of the neural network are composed, and use that to
compute the PWA representation of the whole neural
network. Our experimental evaluation highlights the
critical parameters of the network affecting the run-
time complexity. Finally, we illustrate the application
of the PWA representation computation toward sta-
bility analysis of a neural network-controlled discrete-
time linear dynamical system.

I. Introduction

Neural networks are being used routinely as replace-
ments for traditional controllers owing to their compu-
tational and memory efficiency, and their ability to deal
with dynamic and uncertain environments [1], [2]. While
this has resulted in intelligent systems that are more
efficient and robust, their certification remains a barrier
to their deployment in real world. Specifically, the large
size of the neural networks and the highly non-linear
function they represent, combined with the black-box
nature of the controllers lacking human intuition, pose
challenges toward their scalable automatic verification.
Our broad goal through this work is to provide a switched
affine system (SAS) representation of neural network-
controlled systems enabling the application of the large
body of work on SAS verification toward neural network-
controlled linear dynamical systems verification. Further,
such a representation will provide insights into the func-

Copyright ©2025 IEEE
This work was partially supported by NSF Grant No. 2008957,

an Amazon Research Award and by the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement no. 847635.

1Miriam García Soto is with the Faculty of Computer Sci-
ence, Complutense University of Madrid, 28040 Madrid , Spain
miriamgs@ucm.es

2 Pavithra Prabhakar is with the Department of Computer
Science, Kansas State University, Manhattan, KS, 66503, USA
pprabhakar@ksu.edu

tion represented by a neural network, thereby enhancing
their interpretability.

Our main contribution is a compositional algorithm
for computing a piecewise affine system (PWA) rep-
resentation of the input-output function of a neural
network that exploits the compositional nature of this
function as a composition of the functions corresponding
to the individual layers, and the associative property
of the composition operator. Our algorithm takes as
input a neural network N and a composition ordering
T provided as a binary tree with leaves corresponding
to layers of N . The algorithm builds on two primitives:
(1) PWA(W, b) that computes the PWA representation
of the function f(x) = σ(Wx + b), where σ is the
activation function, W the weight matrix and b the
bias; and (2) Compose(f, g) that computes the PWA
representation of the composition of the functions f and
g, that is g ◦ f . The overarching algorithm essentially
computes the PWA representation of the root node of
T through a bottom-up evaluation which is captured
using a recursive algorithm. The compositional nature
of the algorithm makes it amenable to parallelization
and efficient updates for evolving neural networks by
considering a composition ordering that corresponds to
a tree with minimal height.

We performed a thorough experimental evaluation of
our algorithm on a large class of randomly generated
networks to evaluate the effect of different network pa-
rameters on the runtime complexity. First, we noticed
that the network size itself doesn’t affect the runtime.
However, the runtime is proportional to the number of
regions in the PWA representation of the neural network.
Note that the two primitives are called almost the same
number of times (since the number of leaves and internal
nodes in a full binary tree are almost the same), however,
the algorithm spends more time overall in the compu-
tation of the second primitive than the first, implying
that composition construction is more expensive than
computing the PWA computations for individual layers.
This is expected as the size of the PWA representation
grows with composition operations.

Finally, to illustrate how the PWA representation com-
putation can be used toward verification, we consider the
stability verification of neural network-controlled linear
dynamical systems. We apply our algorithm to compute
a PWA representation of the neural network and the SAS
representation of the closed-loop system. Any algorithm
for SAS stability verification can now be used to analyze



the stability of the neural network-controlled system.
a) Related Work: Safety verification of neural

network-controlled systems has been extensively ex-
plored in the literature and is widely based on com-
puting the reachable output set of neural networks with
techniques ranging from abstraction-based methods [3]–
[5] to constraint solving [6]–[8] and symbolic analysis
techniques [9]–[14]. Concretely, the approach in [14] com-
putes a PWA representation from a neural network con-
sidering the usual layer ordering. Our method generalizes
this by enabling arbitrary binary tree orderings.

Stability verification has received relatively less at-
tention in the context of neural network controlled
systems. For instance, a Lyapunov function-based ap-
proach [15]–[17] and a local integral quadratic constraint-
based approach [18] has been explored for systems with
feedforward and recurrent neural network controllers,
respectively. In addition, a compositional approach has
been proposed for learning and verifying neural network
controllers for system subtasks [19]. In contrast, stability
verification has been extensively studied in the realm of
switched linear/affine systems (see [20] for a survey).

There is some recent work on computing PWA repre-
sentation of a single layer [17] and multi-layer [21] neural
network with ReLU activation functions. However, the
algorithm presented in [21] is not compositional unlike
ours which comes with the possibility of parallelization
and efficient updates.

II. Preliminaries
Let R, R≥0 and N denote the set of reals, non-negative

reals and natural numbers, respectively. Given k ∈ N, we
denote by [k] the set of natural numbers {0, 1, . . . , k} and
by (k], the set {1, . . . , k}.

A partition P of S ⊆ Rn into convex polyhedral sets
is a finite set of convex polyhedra {Pi}i∈(k] such that
∪k

i=1Pi = S and for each i ̸= j, Pi ∩ Pj = ∅.
Let f and g be functions such that f : Rn → Rm and

g : Rm → Rp, then the composition of g and f is denoted
by g ◦ f and is defined to be (g ◦ f)(x) = g(f(x)) for any
x ∈ Rn.

A function f : Rn → Rm is said to be piecewise affine
(PWA) if there exist a partition P = {Pi}i∈(k] of Rn into
polyhedral sets and a set of m×n matrices A = {Ai}i∈(k]
and a set of m-dimensional vectors B = {bi}i∈(k], such
that for all x ∈ Rn, f(x) = Aix+bi when x ∈ Pi. We refer
to the tuple (P, A, B) or equivalently {(Pi, Ai, bi)}i∈(k] as
a PWA representation of f .

A Rectified Linear Unit (ReLU) is a function from R
to R, which maps a value to itself if positive and to 0,
otherwise. We use σ to represent the ReLU function, that
is, for an x ∈ R, σ(x) = max(x, 0). A multidimensional
ReLU function extends this operation to Rn, that is,
for x = (x1, . . . , xn) ∈ Rn, σ(x) = (σ(x1), . . . , σ(xn)).
Also, we will use σ[1,i] to denote the function σ[1,i](x) =
(σ(x1), . . . , σ(xi), xi+1, . . . , xn), that applies σ to only
the first i components of the vector.

III. Discrete-time Control Systems
In this section, we describe the discrete-time closed-

loop systems with general state-feedback controllers,
PWA controllers and neural network controllers.
A. Closed-loop Systems

We consider closed-loop systems with discrete-time lin-
ear dynamics for the plant and a general state-feedback
controller. Formally, the closed-loop system is given by
S = (A, B, G), where A and B are matrices in Rn×n

and Rn×m, respectively, and G : Rn → Rm is a state-
dependent function. It represents the following system:{

x(k + 1) = Ax(k) + Bu(k)
u(k) = G(x(k)) (1)

where state x(k) ∈ Rn and control input u(k) ∈ Rm.
An execution of S starting from x0 is a sequence η =
x(0), x(1), . . . such that x(0) = x0 and x(k+1) = Ax(k)+
BG(x(k)) for every k ∈ N>0.
B. Piecewise Affine Controllers

Next, we consider the special case where the controllers
are PWA functions. Consider a system S = (A, B, G),
where is G is a PWA function given by the PWA rep-
resentation (P, C, D) with P = {Pi}i∈(r], C = {Ci}i∈(r]
and D = {di}i∈(r]. Then, the closed-loop system can be
expressed as the switched (discrete-time) affine system
(SAS) x(k + 1) = (A + BCi)x(k) + Bdi when x(k) ∈ Pi

for every i ∈ (r].
Switched affine systems are an important class of

systems, as they can approximate non-linear systems
with arbitrary precision [22], [23]. Verification of several
properties including safety [24]–[26] and stability [20],
[27] have been extensively investigated for SASs.
C. Neural Network-controllers

Next, we consider closed-loop systems where the con-
troller is a neural network. A neural network (NN)
consists of a finite collection of layers, each of which
consists of a finite set of nodes, and a finite set of edges
connecting nodes of adjacent layers. Each node has an
associated bias and an activation function, and each
edge has an associated weight. We assume the activation
function to be the ReLU function. Hence, we represent
the neural network by a set of pairs of matrices and
vectors capturing the inter-layer weights and layer biases.

Definition 1. A neural network is a set N =
{(Wi, bi)}i∈(L], where L is the number of layers, for each
i ∈ (L], Wi is a matrix of dimension ni × ni−1, and
represents the weights on the edges from layer i − 1 to i,
and bi is a vector of dimension ni representing the biases
associated with the nodes in layer i.

Let us fix an NN N = {(Wi, bi)}i∈(L] for the rest of
the paper. The control function G represented by the
neural network N is given by JN K, which is defined as
a composition of the functions represented by individual
layers.



Definition 2. For each i ∈ (L], JN Ki : Rni−1 → Rni

captures the function corresponding to the i-th layer of
the NN, and is given by JN Ki(y) = σ(Wiy + bi) for all
y ∈ Rni−1 . The input-output function for the NN is given
by JN K : Rn0 → RnL where JN K = JN KL ◦ . . . ◦ JN K1.

IV. PWA representation computation
Our broad objective is to use the large body of work on

switched linear system verification toward verification of
neural network-controlled dynamical systems. The main
contribution of this paper is a novel algorithm for trans-
forming the neural network control function JN K into an
equivalent PWA representation. Note that JN K is indeed
a piecewise affine function, is an established observation.
Although such algorithms for NN with one [17] and
more layers [21] have been provided, our algorithm is
compositional in nature and provides several benefits,
including being amenable to parallelization and efficient
updates when neural networks evolve.

A. Algorithm
In this section, we provide an iterative algorithm to

compute a PWA representation of a given NN N . The
main idea consists of constructing a PWA representation
for a specific layer JN Ki, and then composing these rep-
resentations. The crux of our algorithm consists of two
subroutines: (1) PWA(W,b) given by Algorithm 1 that
provides a PWA representation of function fW,b(x) =
σ(Wx + b) for any matrix W and vector b corresponding
to a single layer of a neural network (correctness provided
in Proposition 1) (2) Compose((P, A, B), (Q, C, D)) given
by Algorithm 2 that computes the PWA representation
of the composition of the functions represented by the
PWA representations (P, A, B) and (Q, C, D), respec-
tively (correctness provided in Proposition 2).

Algorithm 1 PWA(W, b)
Require: A matrix W ∈ Rn×m, a vector b ∈ Rn

Ensure: PWA representation (P, A, B) of fW,b

1: Set P = {Rm}, A = {W} and B = {b}
2: for i ∈ (n] do
3: Set P ′, A′, B′ to be empty sets
4: for (P, A, b′) ∈ (P, A, B) do
5: P 0, P 1 = Split(P, W, b, i)
6: for j = 0, 1 do
7: if P j ̸= ∅ then
8: Add (P j , M j

i A, M j
i b′) to (P ′, A′, B′)

9: end if
10: end for
11: end for
12: Set (P, A, B) to be (P ′, A′, B′)
13: end for
14: return (P, A, B)

Algorithm 1 starts with a partition consisting of a
single region with the affine function f(x) = Wx + b

assigned to it, and then mimics the behavior of apply-
ing ReLU iteratively to each dimension. Split(P, W, b, i)
splits the region P into P 0 = P ∩ {x | [W ]ix + [b]i ≤ 0}
and P 1 = P ∩ {x | [W ]ix + [b]i ≥ 0}, where [W ]i and
[b]i represent the i-th rows. That is, it splits P based on
the sign of the i-th neuron on the application of Wx + b.
In Line 8, for each of the regions P 0 and P 1 that are
not empty, the affine dynamics is updated to reflect the
application of ReLU. More precisely, M j

i is an identity
matrix if j = 1 and is an identity matrix with the i-th
diagonal element 0 otherwise. Hence, M1

i , the identity
matrix, is applied to Ax + b′ for the case P 1, but M0

i ,
the matrix that sets the i-component to 0, is applied in
the case of P 0. The following proposition formalizes the
correctness of Algorithm 1.

Proposition 1. The (P, A, B) output by Algorithm 1 is a
PWA representation of fW,b(x) = σ(Wx+b) for x ∈ Rm.

Proof. Initially, in Line 1 (P, A, B) represents the func-
tion f(x) = Wx + b. The following invariant is main-
tained: For each i, (P, A, B) at the end of the i-th
iteration of the loop (Line 12) represents the function
f[1,i](x) = σ[1,i](Wx+b). This is clear since each iteration
mimics the application of σ on the i-th components.
Hence, when the loop terminates, the PWA represents
the function fW,b(x) = σ(Wx + b).

Remark 1. Note that in general P could be split into
{0, 1}n regions if we consider two splits per neuron due
to the ReLU application. Our algorithm is iterative and
does not explicitly explore all of these possible splittings.
Instead, it iteratively splits based on a certain neuron i
and only continues forward with those regions that are
not empty. Hence, 2n−i combinations that correspond to
an empty region are eliminated. These polyhedral regions
are efficiently computed by using the Parma Polyhedra
Library [28].

Algorithm 2 Compose((P, A, B), (Q, C, D))
Require: PWA (P, A, B) for f and (Q, C, D) for g
Ensure: PWA (R, E , H) for the composition g ◦ f

1: Set R, E , H to be empty sets
2: for (P, A, b) ∈ (P, A, B) do
3: for (Q, C, d) ∈ (Q, C, D) do
4: R := {x : x ∈ P, Ax + b ∈ Q} ▷ Polyhedron
5: E := CA ▷ Matrix
6: h = Cb + d ▷ Vector
7: Add (R, E, h) to (R, E , H)
8: end for
9: end for

10: return (R, E , H)

Next, we present Algorithm 2 that computes the PWA
representation of the composition of two given PWA
representation. The correctness of the algorithm is sum-
marized in the following proposition.



Proposition 2. (R, E , H) output by Algorithm 2 is a
PWA representation of h = g ◦ f , where f and g are
the functions corresponding to the PWA representations
(P, A, B) and (Q, C, D), respectively.

Proof. Note that P is the partitioning of input space of
f and Q is a partitioning of the input space of g (as
well as the output space of f). The broad idea of the
algorithm is to compute a refinement of P, that is, a
further split of the regions of P such that the new regions
upon application of f will be contained within a region
of Q. This is accomplished by taking a region P of P and
Q of Q iteratively and computing the subregion of P for
which application of f leads to elements of Q. This is
accomplished in Line 4. We need to assign the composed
function g◦f corresponding to this region, which is given
by g ◦ f(x) = C(Ax + b) + d = CAx + Cb + d, where
f(x) = Ax + b for x ∈ P and g(y) = Cy + d for y ∈ Q.
Hence, E is assigned CA and h is assigned Cb + d.

Algorithm 3 ComputePWA(N , T)
Require: NN N = {(Wi, bi)}i∈(L], comp. ordering T
Ensure: PWA representation (R, E , H) of JN K

1: for node v in T do
2: if v is a leaf with label i then
3: Return PWA(Wi, bi)
4: end if
5: if v is an internal node then
6: (P, A, B) = ComputePWA(N , Tl)
7: (Q, C, D) = ComputePWA(N , Tr)
8: (R, E , H) = Compose((P, A, B), (Q, C, D))
9: end if

10: end for
11: return (R, E , H)

The PWA representation for JN K is broadly computed
by computing JN Ki for each i and composing them. Note
that composition is an associative operation, that is, f ◦
(g◦h) = (f◦g)◦h, and hence, there are multiple orderings
in which compositions can be applied. First, we define
a composition ordering to capture a valid order on the
composition of the JN Kis to obtain JN K.

Recall that a full binary tree is a binary tree where
each node has 0 or 2 children. The nodes with 0 children
are referred to as leaves and those with 2 children are
referred to as internal nodes. The yield of the binary tree
is the sequence of labels of the leaves from left to right.

Definition 3. A composition ordering T on a neural
network with L layers is a full binary tree whose yield is
the sequence 1, 2, . . . , L.

Intuitively, each leaf with a label i from (L] represents
the function JN Ki, and each internal node corresponds to
the composition g◦f of the functions f and g represented
by the left and right children, respectively. Figure 1
shows two composition orderings. The left balanced tree

T1 composes Layer 1 and Layer 2, and composes Layer
3 and Layer 4, and then composes the results of those
two. The right skewed tree T2, composes Layer 3 and
4, composes Layer 2 with the result of the previous
composition, and finally composes Layer 1 with the result
of the last composition.

Fig. 1: Two composition orderings

Algorithm 3 summarizes the computation of the PWA
representation of JN K by composing PWA representa-
tions of the layers in the order specified by a compo-
sition ordering T . Note that the algorithm returns the
same PWA representation irrespective of the composition
ordering, however, some ordering are more beneficial
than others for parallelization and efficient updates. For
instance, the balanced tree T1 allows for the computation
of the compositions of Layer 1 and Layer 2 and Layer 3
and Layer 4 in parallel, while the structure of T2 prohibits
such parallel applications of Algorithm 2.

Another practically relevant scenario is the need to
compute PWA representation in the presence of neural
network retraining that happens as new data becomes
available. Suppose that only the parameters of a specific
layer change. To update the PWA representation of the
evolved neural network we need to run Algorithm 1 on
the leaf corresponding to this layer, and Algorithm 2
on the compositions corresponding to the internal nodes
on the path from that leaf to the root. Specifically, in
Figure 1, if Layer 4 is updated, for the T1 ordering
one would need to update compositions corresponding
to two internal nodes, whereas in T2, three compositions
would need to be recomputed. This difference could be
larger for balanced and skewed tree corresponding to
deep networks with balanced trees requiring O(log L)
updates where as skewed trees requiring O(L) updates.

B. Experimental Evaluation
We performed an extensive study of our algorithm on

neural networks with varying number of layers L and
maximum number of neurons per layer N . Table I reports
a selection of the results for illustrative purposes and
reports B and R - the theoretical bound on the number
of possible regions and the actual number of regions in
the PWA representation of the neural network, and T1
and T2 - the total time spent executing Algorithm 1 and
Algorithm 2 in seconds within Algorithm 3. Extended
experimental results are available at this link.

https://github.com/Miriam-GS/NNControl/blob/main/experimental_results.txt


L N B R T1 (s) T2 (s)
2 6 32 8 0.000547 0.003884
3 6 2048 13 0.002007 0.034174
4 8 1.05e+06 205 0.018842 12.312506
5 7 8.39e+06 10 0.015078 0.526416
5 7 3.36e+07 6519 0.021295 18.146870
5 7 2.68e+08 12787 0.021867 137.985291

TABLE I: Study of Algorithm 3

Fig. 2: System with neural network controller

Note that, in general, there is no correlation between
the number of regions in the PWA representation and
the architecture/size of the neural network. In fact, the
actual number of regions is significantly smaller than
the theoretical bound O(2N ). This difference occurs
because Algorithm 2 may generate empty regions, which
are retained and efficiently pruned by Algorithm 3. A
large number of empty regions will, in fact, accelerate
the construction process. On the other hand, the total
time taken by the algorithm (T1 + T2) increases with
the number of regions in the PWA representation. We
observe that most of the computation time is spent ex-
ecuting Algorithm 2. In contrast, the total computation
time for PWA representation computation for individual
layers (Algorithm 1) is negligible. Note that the compo-
sition time increases with the number of compositions
since the PWA representations also grow in size with
subsequent compositions.

V. Illustration with Stability Analysis

In this section, we illustrate an end-to-end stability
analysis of a neural network-controlled linear dynamical
system by first computing a PWA representation of the
neural network, then computing a switched affine sys-
tem representation of the closed-loop system and finally
performing the stability analysis on the latter.

A. Closed-loop system description
We consider the closed-loop system in Figure 2, where

the matrices for the linear dynamical system are given
by:

A =
[
−0.17 0.17
0.41 0.71

]
and B =

[
0.2 0.32
0.66 −0.5

]
.

For the system x(t + 1) = Ax(t) + Bu(t), with u(t) =
G(x(t)) to have an equilibrium point at 0, we will assume
G(0) = 0. Since, G is now represented by a neural
network, we will consider a neural network with 0 biases
to achieve this condition. We will explore the stability of
the closed-loop system with respect to the equilibrium
point x(0) = 0.

The neural network controller consists of one hidden
layer and two nodes at each layer. Concretely, W1 and
W2 capture the edge weights from the input layer to the
hidden layer, and from the hidden layer to the output
layer, respectively, and are given by:

W1 =
[
0.7 −0.7
0.7 0.7

]
and W2 =

[
0.86 −0.5
0.5 0.86

]
.

Biases b1 and b2 are 0 vectors. ReLU function is applied
at each node of the hidden and output layers.

B. Illustration of Algorithm 1
Let us consider the function fW2(z) = σ(W2z). Algo-

rithm 1 will construct the PWA representation (Q, C, D),
which in this particular case is just a piecewise linear
(PWL) function, since D will only consist of 0 vectors.
Hence, we will drop the third component from our il-
lustration and referred to the system as PWL. Consider
q1(z) = 0.86z1 − 0.5z2 and q2(z) = 0.5z1 + 0.86z2 corre-
sponding to the two rows of W2. The Q will correspond
to splitting R2 with respect to the hyperplanes defined
by q1 and q2, that is, partitioning R2 with q1(z) ≥ 0,
q1(z) < 0 and then partitioning each of the non-empty
regions with q2(z) ≥ 0, q2(z) < 0. In this case, all four
regions Q1, Q2, Q3, and Q4 are non-empty, and are added
to the partition Q. The associated matrices are added
to C. For instance, Q2 is determined by the constraints
q1(z) = 0.86z1 − 0.5z2 < 0, and q2(z) = 0.5z1 + 0.86z2 ≥
0, For instance, the matrix corresponding to Q2 is C2 =
M0

1 M1
2 W2 =

[
0 0

0.5 0.86

]
.

Similarly, we can compute the PWL representation
(P, A) of fW1 . Specifically, P1 = {x ∈ R2 | 0.7x1 −
0.7x2 ≥ 0, 0.7x1 + 0.7x2 ≥ 0} and A1 =

[
0.7 −0.7
0.7 0.7

]
.

C. Illustration of Algorithm 2
Next, we will apply Algorithm 2 on (P, A) and

(Q, C) to compute the PWL representation of (R, E)
of the complete neural network. Specifically, we will
illustrate the loop for the regions P1 and Q2, which
gives rise to the region R12 and corresponds to the
constraints p1(x) = 0.7x1 − 0.7x2 ≥ 0, p2(x) =
0.7x1 + 0.7x2 ≥ 0, q1(M0

1 M1
2 W2x) = 0.252x1 −

0.952x2 < 0, and q2(M0
1 M1

2 W2x) = 0.952x1 +
0.252x2 ≥ 0. The matrix associated with R12 is
C2A1 and is given by

[
0 0

0.952 0.252

]
. The complete

PWA representation consists of eight regions, namely,
R11, R12, R22, R21, R41 each with a unique dynamics and
the regions R33, R34, R44 with the same dynamics.



D. Stability analysis
Finally, we compose the PWA representation of the

neural network with the linear dynamics and obtain
the switched linear system with the same partition
R11, R12, R22, R21, R41, R33, R34, R44 and updated dy-
namics. We note that the matrix norm for each of the
resulting matrices is < 1, therefore the system with
any arbitrary switching between these matrices is stable,
specifically the one computed which has more restricted
switching – it will switch under certain constraints.

VI. Conclusions
In this paper, we presented a novel compositional algo-

rithm for the computation of a PWA system representa-
tion of a neural network, that provides a switched affine
system representation of a neural network-controlled
linear dynamical system. This opens up the possibility
of the use of switched system verification techniques to-
ward neural network-controlled system verification. Our
study of the compositional algorithm for piecewise affine
system representation computation of the neural network
input-output function highlights the network parameters
that affect the runtime. We have illustrated the applica-
tion of the algorithm and the translation to the stability
analysis of a closed-loop system. In the future, we plan
to explore rigorous automated verification approaches for
different properties of neural network-controlled systems,
including safety and stability, using a switched system
representation. Also, it would be interesting to explore
the benefits of a piecewise affine representation to the
interpretability of neural networks.

References
[1] A. Voevoda and D. Romannikov, “Synthesis of neural net-

works for solving optimal control problems,” IOP Conference
Series: Materials Science and Engineering, vol. 953, no. 1,
p. 012065, 2020.

[2] S. Cerf and E. Rutten, “Combining neural networks and
control: potentialities, patterns and perspectives,” in IFAC
2023 - 22nd World Congress of the International Federation
of Automatic Control, 2023.

[3] P. Prabhakar and Z. R. Afzal, “Abstraction based output
range analysis for neural networks,” in Annual Conference on
Neural Information Processing Systems, 2019.

[4] P. Prabhakar, “Bisimulations for neural network reduction,”
in International Conference on Verification, Model Checking,
and Abstract Interpretation, pp. 285–300, Springer, 2022.

[5] Y. Zhong, R. Wang, and S. Khoo, “Expediting neural network
verification via network reduction,” in 38th IEEE/ACM In-
ternational Conference on Automated Software Engineering,
ASE 2023, pp. 1263–1275, IEEE, 2023.

[6] S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Ti-
wari, “Sherlock - A tool for verification of neural network feed-
back systems: demo abstract,” in Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation
and Control, HSCC, pp. 262–263, ACM, 2019.

[7] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus,
R. Lim, P. Shah, S. Thakoor, H. Wu, A. Zeljić, et al., “The
marabou framework for verification and analysis of deep neu-
ral networks,” in International Conference on Computer Aided
Verification, pp. 443–452, Springer, 2019.

[8] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh,
and J. Z. Kolter, “Beta-crown: Efficient bound propagation
with per-neuron split constraints for complete and incomplete
neural network verification,” arXiv:2103.06624, 2021.

[9] H. Tran, D. M. Lopez, P. Musau, X. Yang, L. V. Nguyen,
W. Xiang, and T. T. Johnson, “Star-based reachability analy-
sis of deep neural networks,” in Formal Methods - The Next 30
Years - Third World Congress, FM 2019, vol. 11800 of Lecture
Notes in Computer Science, pp. 670–686, Springer, 2019.

[10] S. Bak, T. Dohmen, K. Subramani, A. Trivedi, A. Velasquez,
and P. Wojciechowski, “The octatope abstract domain for ver-
ification of neural networks,” in 25th International Symposium
on Formal Methods, vol. 14000, pp. 454–472, Springer, 2023.

[11] M. N. Müller, G. Makarchuk, G. Singh, M. Püschel, and
M. T. Vechev, “PRIMA: general and precise neural network
certification via scalable convex hull approximations,” Proc.
ACM Program. Lang., vol. 6, no. POPL, pp. 1–33, 2022.

[12] G. Singh, T. Gehr, M. Püschel, and M. T. Vechev, “An
abstract domain for certifying neural networks,” Proc. ACM
Program. Lang., vol. 3, no. POPL, pp. 41:1–41:30, 2019.

[13] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov,
S. Chaudhuri, and M. Vechev, “Ai2: Safety and robustness
certification of neural networks with abstract interpretation,”
in IEEE symposium on security and privacy (SP), 2018.

[14] A. Abate, A. Edwards, and M. Giacobbe, “Neural abstrac-
tions,” in Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Processing
Systems, NeurIPS, 2022.

[15] A. S. Poznyak, W. Yu, E. N. Sanchez, and J. P. Perez,
“Stability analysis of dynamic neural control,” Expert Systems
with Applications, vol. 14, no. 1, pp. 227–236, 1998.

[16] M. Korda, “Stability and performance verification of dynam-
ical systems controlled by neural networks: algorithms and
complexity,” 2022.

[17] P. Samanipour and H. A. Poonawala, “Stability analysis and
controller synthesis using single-hidden-layer relu neural net-
works,” IEEE Transactions on Automatic Control, vol. 69,
no. 1, pp. 202–213, 2024.

[18] W. Wu, J. Chen, and J. Chen, “Stability analysis of sys-
tems with recurrent neural network controllers,” IFAC-
PapersOnLine, vol. 55, no. 12, pp. 170–175, 2022.

[19] R. Ivanov, K. Jothimurugan, S. Hsu, S. Vaidya, R. Alur, and
O. Bastani, “Compositional learning and verification of neural
network controllers,” vol. 20, Sept. 2021.

[20] H. Lin and P. J. Antsaklis, “Stability and stabilizability of
switched linear systems: A survey of recent results,” IEEE
Transactions on Automatic Control, vol. 54, no. 2, pp. 308–
322, 2009.

[21] H. Robinson, A. Rasheed, and O. San, “Dissecting deep neural
networks,” 2020.

[22] T. Dang, O. Maler, and R. Testylier, “Accurate hybridization
of nonlinear systems,” in Proceedings of the 13th ACM In-
ternational Conference on Hybrid Systems: Computation and
Control, HSCC ’10, p. 11–20, 2010.

[23] D. Li, S. Bak, and S. Bogomolov, “Reachability analysis of
nonlinear systems using hybridization and dynamics scaling,”
in Formal Modeling and Analysis of Timed Systems, pp. 265–
282, 2020.

[24] M. Anand, R. Jungers, M. Zamani, and F. Allgöwer, “Path-
complete barrier functions for safety of switched linear sys-
tems,” in 2024 IEEE 63rd Conference on Decision and Control
(CDC), pp. 7423–7428, 2024.

[25] P. S. Duggirala and A. Tiwari, “Safety verification for linear
systems,” in 2013 Proceedings of the International Conference
on Embedded Software (EMSOFT), pp. 1–10, 2013.

[26] R. Alur, “Formal verification of hybrid systems,” in 2011
Proceedings of the Ninth ACM International Conference on
Embedded Software (EMSOFT), pp. 273–278, 2011.

[27] M. Ogura and C. Martin, “Generalized joint spectral radius
and stability of switching systems,” Linear Algebra and its
Applications, vol. 439, no. 8, pp. 2222–2239, 2013.

[28] R. Bagnara, P. M. Hill, and E. Zaffanella, “The parma polyhe-
dra library: Toward a complete set of numerical abstractions
for the analysis and verification of hardware and software
systems,” Sci. Comput. Program., vol. 72, no. 1–2, 2008.


	Introduction
	Preliminaries
	Discrete-time Control Systems
	Closed-loop Systems
	Piecewise Affine Controllers
	Neural Network-controllers

	PWA representation computation
	Algorithm
	Experimental Evaluation

	Illustration with Stability Analysis
	Closed-loop system description
	Illustration of Algorithm 1
	Illustration of Algorithm 2
	Stability analysis

	Conclusions
	References

