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Abstract. In this paper, we present a counterexample guided abstrac-
tion refinement (Cegar) algorithm for stability analysis of polyhedral
hybrid systems. Our results build upon a quantitative predicate abstrac-
tion and model-checking algorithm for stability analysis, which returns
a counterexample indicating a potential reason for instability. The main
contributions of this paper include the validation of the counterexample
and refinement of the abstraction based on the analysis of the coun-
terexample. The counterexample returned by the quantitative predicate
abstraction analysis is a cycle such that the product of the weights on
its edges is greater than 1. Validation involves checking if there exists
an infinite diverging execution which follows the cycle infinitely many
times. Unlike in the case of Cegar for safety, the validation problem is
not a bounded model-checking problem. Using novel insights, we present
a simple characterization for the existence of an infinite diverging execu-
tion in terms of the satisfaction of a first order logic formula which can
be efficiently solved. Similarly, the refinement is more involved, since,
there is a priori no bound on the number of predecessor computation
steps that need to be performed to invalidate the abstract counterex-
ample. We present strategies for refinement based on the insights from
the validation step. We have implemented the validation and refinement
algorithms and use the stability verification tool Averist in the back
end for performing the abstraction and model-checking. We compare the
Cegar algorithm with Averist and report experimental results demon-
strating the benefits of counterexample guided refinement.

1 Introduction

Hybrid systems refer to systems exhibiting mixed discrete continuous behav-
iors. These manifest naturally in embedded control systems as a result of the
interaction of embedded software, which executes in discrete steps, with physical
systems, which evolve continuously in dense real-time. In particular, we consider
switched hybrid systems [13] in which the continuous state does not change dur-
ing a mode switching. These are apt for modeling supervisory control, wherein
a supervisor continuously senses the state of a plant and takes mode change
decisions based on that.



In this paper, we focus on automated stability analysis of switched hybrid sys-
tems. Stability is a fundamental property in control system design and captures
robustness of the system with respect to initial states or inputs. We consider a
classical notion of stability, namely, Lyapunov stability with respect to an equi-
librium point — a state of the system which does not change with time evolution.
Intuitively, an equilibrium point is Lyapunov stable if the executions starting in
a small neighborhood of the equilibrium point remain close to it.

The classical methods for stability analysis are based on exhibiting a function
from the state-space to the non-negative reals called a Lyapunov function (see,
for instance, [11]), that ensures that the value of the function decreases along
any execution of the system. Automated methods for stability analysis rely on a
template based search for a Lyapunov function. For instance, a polynomial func-
tion with coefficients as parameters is chosen as a candidate Lyapunov function.
The parameters are computed by solving Linear Matrix Inequalities or Sum-
of-Squares [17] programming which arise while encoding the constraints of the
Lyapunov function.

One of the challenges with Lyapunov based methods is the ingenuity of the
user required in choosing the right templates. An exhaustive search over all tem-
plates (for instance, polynomials of increasing degrees) becomes unmanageable
for relative small degrees of polynomials. In [20, 21], the authors present an
alternate stability analysis method based on abstractions for a subclass of hy-
brid systems called polyhedral hybrid systems. Polyhedral hybrid systems are
an interesting class of systems that can be used to abstract linear and non-linear
hybrid systems [12, 3]. The authors propose a quantitative predicate abstraction
method that constructs a finite weighted graph, and analyse the latter for the
existence of cycles with product of edge weights ≥ 1. The absence of such cy-
cles indicates that the system is Lyapunov stable. It is suggested that better
abstractions can be obtained by choosing a larger set of predicates. However,
no efficient strategies for the selection of the same is discussed. Here we take
the quantitative predicate abstraction based analysis a step further, and discuss
strategies for refinement based on counterexample validation. This is popularly
referred to as Cegar (counterexample guided abstraction refinement [6]).

The main contributions of the paper are the validation and refinement algo-
rithms. Validation consists of checking if an abstract counterexample actually
corresponds to a concrete counterexample. In the context of safety analysis [6], an
abstract counterexample typically consists of a finite sequence of abstract states
or nodes in a finite graph from the initial state to an unsafe state. Validation
consists of checking if there exists a finite execution of the system which follows
the sequence of abstract states. However, the validation problem we encounter is
not a bounded model-checking problem as above. Instead, it consists of checking
if there exists an infinite diverging trajectory that follows the cycle infinitely
many times. This property cannot, as is, be encoded as the satisfiability of a
formula in a finitary logic. We provide a novel characterization of the existence
of an infinite diverging execution in terms of the existence of a finite execution
that follows the cycle once from a continuous state x to a continuous state y



such that y = αx for some α > 1. This provides an algorithmic procedure to
perform validation, since, the latter can be encoded as the satisfiability problem
of a first order logic formula, and efficiently solved.

Refinement in safety analysis consists of computing, iteratively, subsets of
concrete states corresponding to abstract states that can reach the unsafe states.
If the counterexample is spurious, one of the computed sets is empty, referred
to as the point of refinement, and a refinement occurs by examining some local
abstract states around this point of refinement. Since, the concrete counterexam-
ple required for validation has a finite length m, upper bounded by the abstract
counterexample length, the point of refinement is reached within m steps. In the
case of refinement for stability, we show that though a priori no such bound on
the point of refinement exists, if the counterexample is spurious, it is definitely
reached.

We propose two refinement strategies — one of which is applicable always,
however, does not eliminate a large fraction of counterexamples; the other is ap-
plicable only in certain cases, but eliminates a large fraction of counterexamples.
If the validation procedure infers that the counterexample not only does not have
an infinite diverging execution corresponding to it, but also does not have any
infinite executions corresponding to it; then our refinement algorithms ignores
the edge weights and aims to “eliminate” the cycle. Otherwise, it considers the
weights and only aims to reduce the weights on the cycle.

We have implemented the Cegar algorithm, which uses Averist in the
backend to perform the abstraction and model-checking steps of the Cegar.
We report experimental comparisons between the Cegar algorithm and the
Averist algorithm. For the latter, we consider refinement based on the naive
strategy of uniformly adding new predicates. Our experimental results demon-
strate the benefits of Cegar both in terms of reduced computation time and
smaller abstractions that result as a result of careful refinement in each itera-
tion. Future work will consist of extending the Cegar framework for stability
analysis to more general classes of hybrid systems, and related notions such as
asymptotic stability.

Related Work. We briefly discuss related work. There is a large body of work
on Lyapunov function based stability analysis for linear and non-linear hybrid
systems, see the surveys [4] and [14]. There is some work on automated ver-
ification of stability of linear systems by iteratively refining partitions [16, 15,
24], however, it is not an abstraction based approach and the refinements are
not guided by counterexample analyses. Cegar has been explored for safety
verification of hybrid systems [2, 5, 18] and region stability analysis [8]. How-
ever, unlike Lyapunov and asymptotic stability, safety and region stability are
bisimulation invariant properties. Recently, there is some work on learning the
templates for Lyapunov functions [10].



2 Polyhedral Switched System (PSS)

A hybrid automaton [1] is a popular formalism for modeling mixed discrete-
continuous behaviors. It extends the finite state automaton model for discrete
dynamics by annotating the modes with differential equations or inclusions for
modeling the physical systems. In addition, invariants on the modes and guards
on the edges provides constraints that need to be satisfied during evolution and
mode switching, respectively. A polyhedral switched system PSS is a special
kind of hybrid automaton in which each mode is associated with a polyhedral
differential inclusion and the invariants and guards are specified by linear con-
straints.

Definition 1. A n-dimensional polyhedral switched system (PSS) is a tuple
H = (Loc,Edges, X, Flow, Inv,Guard), where:

– Loc is a finite set of locations;
– Edges ⊆ Loc× Loc is a finite set of edges;
– X = Rn is the continuous state-space;
– Flow : Loc→ CPolySets(n) is the flow function;
– Inv : Loc→ PolySets(n) is the invariant function; and
– Guard : Edges→ PolySets(n) is the guard function.

where PolySets(X) denotes the set of all convex polyhedral subsets of X, and
CPolySets(X) denotes the set of compact convex polyhedral sets.

Notation. From now on, we will denote each of the elements in a PSS H, with
H as a subscript, for instance, the invariant function will be referred to as InvH.

Example. Figure 1 shows a 3-dimensional polyhedral switched system along the
x−y plane when the value along the z-axis is taken to be 1. Essentially, the poly-
hedral sets from A to F are pyramids centered at x = 0, y = 0. VA through VF
represent the polyhedra in the polyhedral differential inclusions corresponding
to the regions A to F . We assume that ż = 1 everywhere. A sample execution
of the system is shown using a sequence of directed thin lines.

A switched system starts evolving in a mode q ∈ Loc and a continuous
state x. In this mode q, the continuous state evolves inside Inv(q) such that the
differential of the evolution at any time lies within Flow(q). If (q1, q2) is an edge
of the system and the continuous state satisfies the guard, a switch from q1 to
q2 can occur. The continuous state does not change during the mode switching.
The semantics of a PSS H are given by the set of executions exhibited by the
system.

Definition 2. An execution σ of a PSS of dimension n is a triple (ι, η, γ),
where ι is a sequence of time intervals I0, I1, . . . which refer to the times spent
by the execution in a particular location, η : I(ι) → X, where I(ι) = ∪iι(i),
represents the continuous state at all times, and γ maps i to the location the
execution evolves in during the interval Ii.



Fig. 2. (Left) Polyhedral switched system (Right) Abstract counterexample

2.1 Reachability relations

We introduce a reachability relation predicate to visually simplify some prede-
cessor and sucessor operators defined next.

Definition 3. Consider a PSS H. Let P1, P2 and P be polyhedral sets. Let be
q1 and q2 locations in LocH. A rechability relation on these three polyhedral sets
is a polyhedral set defined as

ReachRelH((q1, P1), P, (q2, P2)) = {(x, y) ∈ R2n | ∃ finite execution σ = (ι, η, γ)

∈ Exec(H), I(ι) = [0, T ], η(0) ∈ P1, η(T ) ∈ P2, η(t) ∈ P ∀t ∈ (0, T ), γ(0) = q1

and γ(Last(dom(ι))) = q2}
The computation of those rechability relations can be performed by following

the process explained in [21].
Next, we define the predecessor and successor operators denoted by preH and

postH, respectively.

Definition 4. Given three polyhedral sets P1,P2 and P , we define:

– preH((q1, P1), P, (q2, P2)) = {x ∈ P1 | ∃y ∈ P2 : (x, y) ∈ ReachRelH((q1, P1),
P, (q2, P2))}

– postH((q1, P1), P, (q2, P2)) = {y ∈ P2 | ∃x ∈ P1 : (x, y) ∈ ReachRelH((q1, P1),
P, (q2, P2))}
We associate a scaling with each execution which is the factor by which an

execution moves away from the origin with respect to where it started. We define
the predecessor and successor operators with respect to certain scalings, denoted
by wpreH and wpostH, respectively.

Definition 5. Given three polyhedral sets P1, P2, P and a scaling w > 0, we
define:

Fig. 1. (Left) Polyhedral switched system (Right) Abstract counterexample

An execution σ = (ι, η, γ) of H is said to be complete if I(ι) is [0,∞); otherwise,
it is called finite. The set of all executions of H will be denoted by Exec(H), and
the set of all complete executions by CExec(H).

2.1 Reachability relations

We introduce certain predicates related to reachability which we will need in the
sequel. Let us fix an n-dimensional PSS H, two locations q1 and q2 in LocH, and
three polyhedral sets P1, P2 and P over Rn for the rest of the section.

ReachRelH((q1, P1), P, (q2, P2)) = {(x, y) ∈ Rn×Rn | ∃ finite execution σ = (ι, η, γ)

∈ Exec(H), I(ι) = [0, T ], x = η(0) ∈ P1, y = η(T ) ∈ P2, η(t) ∈ P ∀t ∈ (0, T ),

γ(0) = q1 and γ(Last(dom(ι))) = q2}
It captures the set of points (x, y) ∈ P1×P2 such that there exists an execution
which starts at (q1, x) and ends at (q2, y) and remains in P at all intermediate
time points. It is shown in [21] that the ReachRelH is computable and can be
represented as a 2n-dimensional polyhedral set. Next, we define the predecessor
and successor operators denoted by preH and postH, and their weighted counter-
parts wpreH and wpostH, respectively.

– preH((q1, P1), P, (q2, P2)) = {x ∈ P1 | ∃y ∈ P2 : (x, y) ∈ ReachRelH((q1, P1),
P, (q2, P2))}

– postH((q1, P1), P, (q2, P2)) = {y ∈ P2 | ∃x ∈ P1 : (x, y) ∈ ReachRelH((q1, P1),
P, (q2, P2))}

– wpreH((q1, P1), P, w, (q2, P2)) =

= {x ∈ P1|∃y ∈ P2, (x, y) ∈ ReachRelH((q1, P1), P, (q2, P2)), ||y||||x|| = w}
– wpostH((q1, P1), P, w, (q2, P2)) =

= {y ∈ P2|∃x ∈ P1, (x, y) ∈ ReachRelH((q1, P1), P, (q2, P2)), ||y||||x|| = w}

Here, w is a positive real number and e || · || denotes the infinity norm of an
element in Rn.



3 Stability

In this section, we define a classical notion of stability in control theory, namely,
Lyapunov stability. We consider stability of the system with respect to the ori-
gin 0̄, which we assume is an equilibrium point. Intuitively, Lyapunov stability
captures the notion that an execution starting close to the equilibrium point
remains close to it. Le Bε(0̄) be an open ball of radius ε around 0̄, which denotes
{x | ||x|| < ε}.
Definition 3. A PSS H is said to be Lyapunov stable, if for every ε > 0,
there exists a δ > 0 such that for every execution σ = (ι, η, γ) ∈ Exec(H) with
η(0) ∈ Bδ(0̄), η(t) ∈ Bε(0̄) for every t ∈ I(ι).

Observe that Lyapunov is a local property whose satisfaction depends on the
behaviors of the system in a small neighborhood around the origin. Hence, the
only polyhedral sets of the PSS which play a role in stability analysis are those
which contain the 0̄. Therefore, we will assume without loss of generality that
the PSS is in a normal form [20, 21].

Definition 4. A polyhedral set P is closed under positive scaling if for every
x ∈ P and α > 0, αx ∈ P .

Definition 5. A PSS H is in normal form if for every q ∈ Loc and for every
e ∈ Edges, InvH(q) and GuardH(e) are positive scaling closed.

4 Counterexample guided abstraction refinement

In this section, we present the Cegar framework for stability analysis. The algo-
rithm is summarized in Algorithm 1. First, we briefly review the abstraction and
model-checking algorithms for stability analysis of polyhedral switched systems
from [21]. Then, we present the new validation and refinement algorithms.

4.1 Abstraction

The abstraction procedure is a modification of the standard predicate ab-
straction [9] which constructs a finite state system using a finite set of predi-
cates, which simulates the concrete system. It was shown in [19] that stability is
not preserved by simulation and instead stronger notions which strengthen the
simulation relation with continuity conditions are required. Hence, the abstrac-
tion procedure in [20] constructs a finite weighted graph as illustrated in Figure
1. More precisely, the vertices of the graph correspond to pairs of location and
facet of the partition (instead of the regions). An edge exists between two ver-
tices if there exists an execution from one pair of location and facet to the other
by remaining in the common region of the facets. Further, the weights on the
edges store quantitative information, which track by what factor the execution
moves closer to the origin when it reaches the target facet as compared to where
it started on the source facet. Next, we present the formal construction of the
abstract system, for what we introduce some auxiliary definitions.



Algorithm 1 Cegar for stability analysis

Require: H,P,F
Ensure: Stable/Unstable
1: if Check-explosion(H,P) then
2: return Unstable
3: A = Abs(H,P,F)
4: while true do
5: π := Model-checking(A)
6: if π not counterexample then
7: return Stable
8: ψ := Encode-ψπ(m > 1)
9: if Check-satisfiability(ψ) then

10: return Unstable
11: else
12: ψ := Encode-ψπ(m 6 1)
13: if Check-satisfiability(ψ) then
14: A :=Weighted-refinement(A, π)
15: else
16: A :=Refinement(A, π)

Definition 6. A polyhedral partition P of X ⊆ Rn is a finite set of closed
convex polyhedral sets, {P1, . . . , Pk}, such that X = ∪ki=1Pi and interior(Pi) ∩
interior(Pj) = ∅, for 1 6 i, j 6 k.

The elements of a polyhedral partition are referred to as regions. A polyhedral
partition is said to respect a PSS H if for every P ∈ P, q ∈ LocH and e ∈
EdgesH, either P ⊆ InvH(q) or P ∩ InvH(q) = ∅ and either P ⊆ GuardH(e) or
P ∩GuardH(e) = ∅.

Definition 7. A facet partition F of a polyhedral partition P is a polyhedral
partition of ∪P∈P∂(P ), where ∂(P ) is the boundary of P .

Definition 8. Let us fix a concrete PSS H. Let P be a polyhedral partition of
X and F be a facet partition of P. The abstract system is the finite weighted
graph Abs(H,P,F) = (V,E,W ) defined as follows.

– V = Loc×F .

– E ⊆ V × P × V is {((q1, f1), P, (q2, f2)) |ReachRel((q1, f1), P, (q2, f2)) 6= ∅}.
– W : E → R≥0 ∪ {∞}, such that for e = ((q1, f1), P, (q2, f2)) ∈ E,

W (e) = sup{||y||/||x|| | (x, y) ∈ ReachRel((q1, f1), P, (q2, f2))}

The weight computation on the edges of the abstract graph can be con-
structed by solving an optimization problem on the reachability relation poly-
hedral set [20, 21].



4.2 Model-checking and counterexample generation

For every execution of the concrete system, there is a path in the weighted graph
such that the product of the weights of its edges is an upper bound on the scaling
of the execution - the ratio of the distance of its end point from the origin to the
distance of its starting point from the origin. Therefore, the following theorem
provides sufficient conditions on the finite weighted graph which imply stability
of the concrete system. We say that a region is exploding in H if there exists an
execution which always remains in the region and diverges (goes arbitrarily far
from the origin). Consider a partition P which respects H, then for every region
P ∈ P there exists q ∈ LocH such that P ⊆ InvH(q). The region P is exploding
in H in the case of P ∩ FlowH(q) 6= ∅. Given a path π, let W (π) denote the
product of the weights on the edges of π.

Theorem 1. [21] Let H be a PSS, P be a polyhedral partition respecting H and
F be a facet partition of P. Then, the PSS H is Lyapunov stable if for every
simple cycle π, W (π) ≤ 1 and there is no region in P which explodes in H.

The conditions on the abstract system can be efficiently checked [20, 21].
The model-checking procedure will either return that H is stable or in the case
that the abstract system does not satisfy the conditions of Theorem 1 return
an abstract counterexample in the form of a simple cycle with weight > 1 or
say that the system has an exploding region. In the first case, we know that the
system is stable, and in the third case, it is unstable. For the second case, the
Cegar algorithm proceeds to the validation phase.

Example. Consider the 3-dimensional PSS shown in Figure 1 (Left). Now, the
picture on the right shows part of the abstract system. The nodes are super-
imposed over the facets they represent and the edges show the existence of an
execution between such facets evolving through the common polyhedral set. For
instance, we observe that there exists an execution from facet f1 to f2 evolving
through the polyhedron C. The cycle shown is an abstract counterexample since
the weight associated with it is greater than 1. Validation will check if there
exists an actual execution along the cycle which can witness instability.

Remark 1. The conditions in Theorem 1 are, in fact, both necessary and suffi-
cient in the case of 2-dimensional PSSs [23], however, it is only sufficient in 3
or more dimensions. There are two reasons for the conservativeness. First, the
edges are not transitively closed, because they are existential with respect to the
executions in the concrete system. More precisely, existence of an execution from
a facet f1 to f2 and an execution from f2 to f3 does not imply that there is a
single execution which goes from f1 to f2 to f3. Secondly, a similar transitivity
may not hold on the weights. Suppose that the weight on the edge from f1 to
f2 is w1 and from f2 to f3 is w2. There exists an execution from some point in
f1 to some point in f2 with scaling w1 and an execution from some point in f2
to a point in f3 with weight w2. However, there may not be a single execution
from f1 to f3 through f2 such that the scaling corresponding to the prefix from
f1 to f2 is w1, while that from f2 to f3 is w2.



4.3 Validation

We present some preliminaries and define the validation problem. Next, the
validation procedure and its theoretical basis are presented.

Definition 9. A simple cycle π in Abs(H,P,F) is an abstract counterexample
if W (π) > 1.

A. Validation Problem. Validation consists of checking if the abstract coun-
terexample corresponds to a violation of stability in the concrete system. Let us
fix a counterexample π = (q0, f0), P0, (q1, f1), P1, . . . , (qk−1, fk−1), Pk−1, (q0, f0)
of A = Abs(H,P,F).The following definition states a connection between the
abstract counterexample and the executions in the concrete system.

Definition 10. An execution σ = (ι, η, γ) of H is said to follow the abstract
counterexample π of A = Abs(H,P,F), denoted σ  π, if there exists a non-
decreasing sequence of times 0 = t0, t1, t2, . . . such that η(ti) ∈ fimod k, η(t) ∈ Pi
for t ∈ [t(i−1)mod k, timod k] and (η(ti), η(ti+1)) ∈ ReachRel((qi, fi), Pi, (qi+1,fi+1)).

Further, σ is said to follow π respecting the weights, denoted σ
w
 π, if in addi-

tion

||η(ti+1)||
||η(ti)||

= W ((qimod k, fimod k), Pimod k, (q(i+1)mod k, f(i+1)mod k)).

The following notion captures the violation of Lyapunov stability along π.
The abstract counterexample π is a witness to the violation of Lyapunov stability
by the concrete system H if there exist executions with arbitrary scaling which
follow the cycle respecting the weights.

(C1)∃ε > 0,∀δ > 0,∃σ ∈ Exec(H) such that

σ
w
 π, η(0) ∈ Bδ(0̄),∃t ∈ I(ι), η(t) 6∈ Bε(0̄)

The next proposition states that the above condition in fact implies that there
is a complete execution along π.

Proposition 1. Condition (C1) is equivalent to the existence of a complete ex-

ecution σ of H such that σ
w
 π.

While (C1) can be validated exactly, a refinement corresponding to (C1) tries
to eliminate just the executions which follow the weights on the edges of π
exactly. In order to accelerate the progress in the Cegar iterations, we consider
a stronger validation problem, where we do not require the execution to follow
the weights, but still be diverging.

Definition 11. An abstract counterexample π is said to be spurious if there
does not exist a divergent complete execution σ such that σ  π.

Validation problem: Given an abstract counterexample π, is π spurious?



B. Validation procedure. The crux of the validation procedure is to reduce
the problem of checking the existence of infinite executions to that of finite
executions. Hence, for m ∈ R≥0 we define a predicate ψπ(m), which captures
the set of points x0, . . . , xk such that xk can be reached from x0 by following the
cycle once, and xk = mx0.

ψπ(m) := ∃x0, x1, . . . , xk ∈ Rn : xk = mx0,∀0 ≤ i < k,

xi ∈ fi, (xi, xi+1) ∈ ReachRel((qi, fi), Pi, (qi+1,fi+1)).

Next, we state the main theorem for validation.

Theorem 2. The following holds for the abstract counterexample π:

V1 ∃m > 1 : ψπ(m) ⇒ ∃σ ∈ CExec(H) : σ  π ∧ σ diverges.

V2 @m : ψπ(m) ⇒ @σ ∈ CExec(H) : σ  π.

V3 ∃m : ψπ(m) ∧ @m > 1 : ψπ(m) ⇒
∃σ ∈ CExec(H) : σ  π ∧ @σ ∈ CExec(H) : σ

w
 π.

Remark 2. Condition V1 implies that when there exists m > 1 such that ψπ(m)
holds, the system is unstable. Condition V2 states that when there exist no
m at all such that ψπ(m) is true, then the counterexample has no complete
executions following it, and hence, is spurious. Condition V3 implies that there
is no complete execution following π which respects the weight, however, there
is some complete execution (diverging or not).

Before proving the result above, we introduce some definitions and a fixpoint
theorem that we will use to establish an intermediate result. Let π = (q0, f0), P0,
(q1, f1), P1, . . . , (qk−1, fk−1), Pk−1, (q0, f0) be an abstract counterexample of A.
Let PreReachi(S0), for some S0 ⊆ f0, denote the set of points from which
there is a sequence of length i following π which starts at S0. Similarly, let
WPreReachi(S0) denote the points from which the executions also respect the
weights. We introduce the formal definitions below. PreReach is defined as fol-
lows:

– PreReach0(S0) = S0.

– For i > 0, PreReachi(S0) = preH((qj , fj), Pj , (qj+1,PreReachi−1(S0))), where
j = k − (imod k).

In addition to WPreReach we also define WPostReach.

– WPreReach0(S0) = S0.

– WPreReachi(S0) = wpreH((qj , fj), Pj , wj , (qj+1,WPreReachi−1(S0))), where
wj = W ((qj−1, fj−1)(qj , fj)), i > 0 and j = k − (imod k).

– WPostReach0(S0) = S0.

– WPostReachi(S0) = wpostH((qj , fj), Pj , wj , (qj+1,WPostReachi−1(S0))), where
wj = W ((qj−1, fj−1)(qj , fj)), i > 0 and j = imod k



Theorem 3 (Kakutani’s fixed point theorem). Let S ⊆ Rn be a non empty,
compact and convex set. Let H : S → 2S be a set-valued function whose graph
{(s, s′) : s′ ∈ H(s)} is a closed set, and for all s ∈ S, H(s) 6= ∅ and convex.
Then H has a fixed point, which means ∃s∗ ∈ S : s∗ ∈ H(s∗).

The existence of such kind of fixed point provides us a strategy for proving
the next result.

Proposition 2. If there exists σ ∈ CExec(H) such that σ
w
 π, then there exists

a value m greater than 1 such that ψπ(m) holds.

Proof. Suppose σ ∈ CExec(H) such that σ
w
 π. Let us first define a set

of starting points for divergent executions following π respecting the weights.
Kernel(π) = {x ∈ f0 | ∃σ = (ι, η, γ) ∈ CExec(H) : η(0) = x, σ

w
 π}.

Kernel(π) is a closed convex set which is positive scaling closed. This follows
from the following facts. Firstly, the facet f0 is closed, convex and positive scaling
closed, since it is a facet from a polyhedral partition respecting a PSS H in
normal form. Next, the set Kernel(π) is the intersection of WPreReachi(f0)
for i > 0 which is a multiple of k, the length of the counterexample π. (This
depends on the fact that the set Z =

⋂
imod k=0 WPreReachi(f0) has the property

that Z ⊆ PreReachk(Z)). Finally, the WPreReach and intersection operations
preserve the closedness, the convexity and the positive scaling property.

Consider a set-valued function G from f0 to f0 which maps x0 ∈ f0 to the set
WPostReachk(x0). Define S = {x | ||x|| ≤ 1, x ∈ Kernel(π)}. Since Kernel(π) is
non-empty, convex, closed and closed under positive scaling, we obtain that S is
non-empty, compact and convex. Compactness follows from the assumption that
Kernel(π) is closed and the set ||x|| ≤ 1 is compact, and hence, their intersection
S is compact. The convexity of S follows from the fact that it is the intersection
of the set Kernel(π) and the set ||x|| ≤ 1, both of which are convex.

Define K as an upper bound for the scaling of the executions following π for
one iteration and respecting the weights, so the ones from f0 to WPostReachk(f0),
being k the length of π. Define the set valued function H from S to 2S , which
maps x ∈ S to the set { yK | y ∈ G(x)}.

Note that the graph {(x, y) | y ∈ G(x)} is a closed set. Consider a sequence
of points (x0, y0), (xi, yi), . . . which belong to the graph and converge to (x, y).
Then x will be in the domain of the graph because of closedness of f0. And
y ∈ G(x) because of compactness and linearity of every polyhedral set Flow(q)
for q ∈ Loc which represents the dynamics.

Next, we show that H has a fixed point. For this, we apply the Kakutani’s
fixed point theorem. Since H defined above satisfies the hypothesis of Kakutani’s

theorem, there exists s∗ ∈ S such that s∗ ∈ H(s∗). Then, Note that s∗ ∈ G(s∗)
K ,

it is Ks∗ ∈ G(s∗). Then the sequence of points s∗,Ks∗,K2s∗, . . . holds ψπ(K),
and K > 1 because it is an upper bound on the W (π) and π is a counterexample,
and Kj+1s∗ ∈WPostReachk(Kjs∗) for every j > 0. �

Next, we prove Theorem 2. Suppose π is an abstract counterexample.



V1 Suppose there exists m > 1 and x0, . . . , xk ∈ Rn such that for all 0 ≤ i < k,
xi ∈ fi and (xi, xi+1) ∈ ReachRel((qi, fi), Pi, (qi+1,fi+1)), and xk = mx0.
Then consider the infinite execution ν = x0, . . . , xk−1,mx0, . . . ,mxk−1,m2x0,
. . . ,m2xk−1, . . . such that (mjxi,m

jxi+1) ∈ ReachRel((qi, fi), Pi, (qi+1,fi+1))
for every j > 0 because of linearity of the flows. Construct with such points
and π an execution σ such that σ  π. Note that σ diverges, since m > 1.

V2 It can show by using a similar argument that in the proof of Proposition 2 but
defining Kernel(π) as {x ∈ f0 | ∃σ = (ι, η, γ) ∈ CExec(H) : η(0) = x, σ  π}.

V3 Suppose there exists 0 < m 6 1 and x0, . . . , xk ∈ Rn such that for all 0 ≤ i <
k, xi ∈ fi and (xi, xi+1) ∈ ReachRel((qi, fi), Pi, (qi+1,fi+1)), and xk = mx0.
Then consider the infinite execution ν = x0, . . . , xk−1,mx0, . . . ,mxk−1,m2x0,
. . . ,m2xk−1, . . .. Construct with such points and π an execution σ such that
σ  π. Note that there does not exist σ respecting the weights in π because
in case of existence we would get a contradiction due to Proposition 2. �

4.4 Refinement

First, we formalize the refinement problem. Then, we present different strategies
for refinement by considering the reason for the spuriousness of the abstract
counterexample.

A. Refinement problem. We first introduce the notion of refinement.

Definition 12. Given two abstract systems for H, A = Abs(H,P,F) = (V,E,W )
and A′ = Abs(H,P,F ′) = (V ′, E′,W ′), A′ is said to be a refinement of A,
if there exists a mapping α : V ′ → V such that if (v1, P, v2) ∈ E′, then
(α(v1), P, α(v2)) ∈ E, and W ′(v1, P, v2) ≤W (α(v1), P, α(v2)).

Next we associate a set of triples with an abstract system which captures the
potential executions and scalings along the edges.

Definition 13. Given an abstract system A = (V,E,W ) of H, Pot(A) = {((q1,
x), w, (q2, y)) | ∃((q1, f1), P, (q2, f2)) ∈ E, x ∈ f1, y ∈ f2, ||y||/||x|| = w ≤ W ((q1,
f1), P, (q2, f2))}.

Definition 14. An abstract system A′ of H is a strict refinement of an abstract
system A of H, if A′ is a refinement of A and Pot(A′) is a strict subset of Pot(A).

Refinement problem: Given the concrete system H, an abstract system A of H
and a spurious abstract counterexample of A,namely π, find a strict refinement
A′ of A.

Remark 3. Observe that if F ′ is a facet partition which is strictly finer than F ,
then Abs(H,P,F ′) is a refinement of Abs(H,P,F), however, it may not be a
strict refinement of Abs(H,P,F). Hence, it is crucial to exploit the spuriousness
of the abstract counterexample π to construct a finer facet partition F ′ such
that A′ = Abs(H,P,F ′) is a strict refinement of A.



B. Refinement procedure. We present two different strategies for refinement
based on the reason for the spuriousness. First, we show that non-existence of a
complete execution along π (respecting the weights) implies that the PreReach
(WPreReach) computation terminates.

Theorem 4. Consider a PSS H, an abstract system A of H and a counterex-
ample π. Then

R1 If @σ ∈ CExec(H) such that σ  π ⇒ PreReachi(f0) = ∅ for some i.

R2 If @σ ∈ CExec(H) such that σ
w
 π ⇒WPreReachi(f0) = ∅ for some i.

From Theorem 2, there are two reasons for spuriousness corresponding to Con-
ditions V2 and V3. Statements R1 and R2 suggest the refinement strategies
corresponding to V2 and V3.

Refinement strategy when the premise of V2 holds. Let ι be the smallest index
such that PreReachι(f0) empty. Note that S1 = PreReachι−1(f0) is not empty.

Let the value k̂ = k−(ιmod k). Also, (k̂+1) mod k is the index of the facet which
contains S1. It also implies that the set S2 = postH((qk̂, fk̂), Pk̂, (q(k̂+1)mod k,

f(k̂+1)mod k)) which is also a subset of f(k̂+1)mod k has an empty intersection

with S1. Refinement corresponds to refining the facet f(k̂+1)mod k into {f1, f2}
such that it separates S1 and S2, that is, S1 ⊆ f1 and S2 ⊆ f2, and S1 ∩ f2 = 0̄
and S2∩f1 = 0̄. Such a splitting is always possible since S1 and S2 are two closed
convex polyhedral sets whose intersection contains only 0̄ and hence, there exists
a hyperplane which separates them.

Fig. 2. Refinement

An illustration of the refinement is shown
in Figure 2. The system is partitioned by the
two polyhedral sets C and E, in which the
flow direction is determined by the dashed
lines, pointing from facet f1 to facet f2 and
from f2 to facet f3. Observe that after per-
forming predecessor operation on f3 once we
reach S2 in f2, and predecessor reach set of
S2 in f1 becomes empty. From f1 the successor reach set is computed and inter-
sected with f2, obtaining S1. The two sets S1 and S2 are almost disjoint but for
0̄ so they can be separated by a hyperplane. A choice of a separating hyperplane
is 3x+ 2z = 0.

Proposition 3. The abstract system Abs(H,P,F ′) is a strict refinement of the
abstract system Abs(H,P,F), where F ′ = (F\{f(k̂+1)mod k}) ∪ {f1, f2}.

Proof. It follows from the fact that there is an edge from (qk̂, fk̂) to (q(k̂+1)mod k,

f2), but no edge from (qk̂, fk̂) to (q(k̂+1)mod k, f
1).

Refinement strategy when the premise of V3 holds The refinement is similar to
the previous case, except that all the operators are replaced by their weighted
counterparts, that is, PreReach is replaced by WPreReach and post by wpost. The



following proposition implying progress is similar to Proposition 3, however, the
proof relies on the reduction of the weight rather than the removal of an edge.

Proposition 4. The abstract system Abs(H,P,F ′) is a strict refinement of the
abstract system Abs(H,P,F), where F ′ = (F\{f(k̂+1)mod k}) ∪ {f1, f2}.

Proof. Note that the weight of the edge ((qk̂, fk̂), Pk̂, (q(k̂+1)mod k, f
1)), if it ex-

ists, is less than the weight wk̂, the weight of the edge ((qk̂, fk̂), Pk̂, (q(k̂+1)mod k,

f(k̂+1)mod k)).

Algorithm 1 summarizes the validation and refinement procedures. Line 8
checks if there exists an infinite diverging trajectory by constructing the formula
ψπ(m > 1). If it is satisfiable, then a counterexample is found. If not, a refinement
is required. However, to determine the type of refinement, the satisfiability of the
formula ψπ(m ≤ 1) is checked. If it is not satisfiable, then no infinite execution
corresponding to the abstract counterexample exists, and we proceed with a
non-weighted refinement. However, if ψπ(m ≤ 1) is satisfiable, we know that an
infinite execution exists, but we cannot conclude that it is diverging, hence, we
proceed with a weighted refinement in Line 14.

5 Implementation

The validation procedure and the refinement strategies have been implemented
in Python 2.7.3. We use Z3 SMT solver [7] for the validation, that is, checking
the satisfiability of the formulas in Theorem 2; and use Parma Polyhedra Library
(PPL) for performing polyhedral operations such as reachability computations
in the refinement process. We also use Averist [22] for the abstraction and
model-checking algorithms from [20].

We illustrate our Cegar algorithm on a particular class of polyhedral switched
systems. The experiments are inspired by the example described in Figure 1. The
3-dimensional experiments consist of the same locations as the one in the ex-
ample where the configurations of the flow function Flow are modified. The 4
and 5-dimensional experiments are obtained by extending every element of the
example to higher dimensions.

Some of our results are summarized in Table 1. Here, Exp refers to the ex-
periment number, Dim to the dimension of the concrete system (number of
continuous variables) and Stab states whether the concrete system is Lyapunov
stable (Y ) or not (N ). Ans is the output of the Cegar algorithm, which can be
stable (S ) (when the model-checking succeed), unstable (NS ) (when the valida-
tion succeeds) or no answer (NA) (if the system does not terminate in a pre-set
time). Regions is the number of regions in the polyhedral partition. IT refers to
the number of iterations of the Cegar loop before termination, Ref indicates if
weighted refinement strategy has been applied for some iteration, Pre states only
predecessor reach computation and WPre indicates some weighted predecessor
reach computation has been performed. Size refers to the number of nodes in
the final weighted graph. The time for abstraction, A time, model-checking, MC



Exp Dim Stab Ans Regions IT Ref Size A time MC time Val time Ref time Time

1 3 Y S 163 3 Pre 75 18.75 0.01 0.03 0.03 20.02

2 3 Y S 287 11 Pre 153 196 0.23 0.84 0.30 204.50

3 3 N NS 135 1 − − 0 0 0 0 0.15

4 3 Y NA 59 11 WPre 123 119.32 0.25 0.94 2.44 130.91

5 3 N NS 9 1 − 16 0.30 ε 0.13 0 0.55

6 3 Y S 151 2 WPre 74 12.55 ε 0.17 0.07 5.72

7 3 Y S 179 4 Pre 87 31.63 0.02 0.03 0.04 33.62

8 3 Y S 291 11 Pre 157 249.40 0.38 0.57 0.39 269.11

9 4 Y S 537 3 Pre 341 312 0.32 0.32 0.10 319.42

10 4 Y S 865 7 Pre 601 1543 2.13 1.18 0.28 1582.33

11 5 Y S 1706 3 Pre 1365 4208 4.32 0.51 0.12 4252

Table 1. Experimental results for Cegar algorithm

Averist Cegar technique

Exp Dim Stab Answer Regions Runs Time Answer Regions IT Time

2 3 Y NA 85250 6 10658.26 S 287 11 204.50

2 3 Y NA 4034 4 857.23 NA 59 11 130.91

3 3 Y NA 4035 4 181.32 S 151 2 5.72

4 3 Y NA 4035 4 187.24 S 179 4 33.62

5 4 Y NA 27201 3 4728.61 S 537 3 319.42

Table 2. Comparison of Averist and Cegar technique

time, validation, Val time and refinement, Ref time, are shown along with the
total time Time. All the times are in seconds, and ε indicates a value smaller
than 0.001.

A limit on the number of Cegar iterations has been set to 11, but it can
be set to any arbitrary value. The Cegar procedure terminates on most of the
examples that we are reporting. In the case of experiment 4 we do not obtain
any answer, while in the case of experiments 3 and 5 we obtain instability. In
the experiment 3, we observe instability due to an exploding region, therefore all
the times are zero. In the experiment 5, the refinement is not performed because
the validation algorithm returns the existence of a concrete counterexample. Our
experiments illustrate that the Cegar framework is practically feasible, since
the times added by the validation and refinement procedures can be neglected
if considering the total times.

Next, we compare the Cegar algorithm with Averist. Averist allows spec-
ification of predicates as well as built-in automated methods for generating uni-
form predicates based on an input granularity value. In our comparison, we
run our examples on Averist by iteratively increasing the number of predi-
cates using this feature. Our Cegar algorithm on the other hand applies the
new refinement strategies based on the returned counterexamples for adding the
predicates. We choose the termination criterion for Cegar to be a bound of



11 on the number of iterations, and for Averist, we stop when the running
time is more than 5 times the total time taken by the Cegar algorithm. We
compared all the examples in Table 1 with Averist, however, we present only
a representative subset of them in Table 2. In Table 2, Exp refers to the exper-
iment number, Dim to the dimension of the concrete system and Stab states
whether the concrete system is Lyapunov stable (Y ) or not (N ). Answer is the
algorithmic output, which can be stable (S ), unstable (NS ) or no answer (NA).
Regions is the number of regions in the last polyhedral partition. Runs refers
to the number of times Averist is run with an incremented number of uni-
form predicates, IT refers to the number of iterations of the Cegar loop before
termination and Time is the total time. As we observe from the experiments,
Averist does not terminate on any of the examples within time 5 times that
of the Cegar algorithm. It shows that uniformly partitioning may be slower
since the new predicates added are not necessarily useful towards constructing
the right abstractions that are successful in stability analysis.

6 Conclusions

In this paper, we developed a counterexample guided abstraction refinement
framework for the stability analysis of polyhedral switched systems. This ap-
proach explores the search space systematically by using counterexamples. To
the best of our knowledge, this is the first Cegar framework for stability analy-
sis. Instantiating the Cegar algorithm for stability analysis is non-trivial, since
the notion of a counterexample is more involved, and the refinement is more
expensive. Future work will focus on extending the ideas in the paper to more
general classes of switched systems.
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