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Abstract
Averist[9] is a so�ware tool which implements an algorithmic
approach to verify stability of linear hybrid systems [6, 8]. In
particular, it analyzes stability of linear switched systems. We
illustrate the Averist performance through four easy examples,
two polyhedral switched systems and two linear switched systems,
where we explore stability, instability, arbitrary switching and state
based switching.
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1 Introduction
Hybrid systems are dynamical systems with a mixed discrete and
continuous behaviour. Hybrid automaton is a formalism which
captures such mixed evolution. �ey are useful to model modern
control systems, as autonomous vehicles and smart grids. A fun-
damental property expected out of any control system is stability.
�e stability property assures that small perturbations in the input
to the systems just result in small perturbations of the eventual
behavior of the system. �e state of the art for stability veri�cation
relies on deductive methods. We propose an algorithmic approach.

2 Architecture and design
Averist implements a new counterexample guided abstraction
re�nement (cegar) framework for analyzing the hybrid systems
with polyhedral inclusion dynamics that are generated as a result of
the hybridization. �e tool performs the following main functions:
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Figure 1. Averist architecture

Hybridization. �is function essentially constructs a hybrid sys-
tem with polyhedral inclusion dynamics (phs) from a linear hybrid
system (lhs). �is is achieved by means of a state-space parti-
tion and a linear dynamics over-approximation. �e state-space
partition is constructed using a set of linear predicates; and the
over-approximation consists of a polyhedral set which collects the
vector �eld of the lhs restricted to a region (see [7] for details).

�antitative Predicate Abstraction. �is function takes as in-
put a polyhedral hybrid system and outputs a �nite weighted graph
that over-approximates the behavior of the phs. �e nodes in the
graph correspond to certain facets of the boundaries of the regions
in a state-space partition, and the edges correspond to the existence
of an execution between the facets corresponding to the nodes. In
addition, each edge is tagged with a weight that provides an upper
bound on the scaling factor associated with the executions between
the facets.

Model-checking. �is function takes a weighted graph correspon-
ding to a quantitative predicate abstraction (qpa) as input and
checks structural conditions corresponding to the existence of cer-
tain kinds of cycles to either deduce stability, or output a counterex-
ample showing a potential reason for instability. In particular, if
there is no cycle in the weighted graph with weight greater than
one, then the initial hybrid system is stable. On the contrary, a
cycle with weight greater than one represents an abstract coun-
terexample.

Validation. �is function takes as input an abstract counterex-
ample from the weighted graph analysis of a qpa, and checks if
it corresponds to an actual execution that exhibits instability. In
particular, the analysis determines if the abstract counterexample
is spurious or on the contrary corresponds to an in�nite divergent
execution in the concrete hybrid system.
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(a) Polyhedral switched system (b) Linear switched system

(c) Linear arbitrary switched system

Figure 2. Hybrid automata

Re�nement. �is function takes as input an abstract counterex-
ample of a qpa that has been determined spurious in the validation
module and identi�es predicates to be added to the state-space par-
tition of the qpa which will eliminate the abstract counterexample.

�e so�ware architecture is shown in Figure 1. �e Parma Poly-
hedra Library (PPL) [4] is used to manipulate polyhedral sets, a
reachability analyzer to determine the existence of edges and the
GNU Linear Programming Kit GLPK [1] solver to compute the
weights associated with such edges. All these steps are oriented to
construct the abstract weighted graph. �e graph is constructed
and model-checked by using the NetworkX Python package [2].
�e Z3 so�ware [5] is a high-performance theorem prover and it is
used to check for satis�ability of formulas encoding the existence
of a concrete counterexample for stability. �e PPL and NetworkX
packages utilities are included in the free open-source mathematics
so�ware system sage [3] and the tool is run in it through a terminal
session.

3 Demo
We will show Averist performance on two polyhedral switched
systems, one stable and the other one unstable, and on two lin-
ear switched systems, one with arbitrary switching and the other
one with state based switching. �ese examples are de�ned as
hybrid automata. We will show how to instantiate them by using a
mark-up language. �e instances of the systems will be processed
by Averist, which will generate output �les containing relevant
information about the run of the tool and the stability analysis. In
addition to the hybrid automaton input, certain parameters need
to be set. �e role of input parameters in the process will be ex-
plained. �e obtained output will include detailed information for
each cegar iteration of the full procedure.

Experiment 1. It will consider a 3-dimensional stable switched
system with constant dynamics, as shown in Figure2(a). �is system
will illustrate a stability proof a�er three cegar iterations, spurious
counterexamples and predicate re�nement.

(a) ẋ = A1x (b) ẋ = A2x (c) Arbitrary switching

Figure 3. Linear systems

Experiment 2. It will consider a 3-dimensional unstable switched
system with constant dynamics, as shown in Figure2(a). �is in-
stance will illustrate an instability proof by validating the output
abstract counterexample. �e validation is performed by creating a
formula and asking about satis�ability to the Z3 theorem prover.
We will show the satis�ability formula.

Experiment 3. It will consider a 2-dimensional stable system with
two arbitrary dynamics, as shown in Figure2(c). Sample execu-
tions of the linear dynamics are depicted in Figures 3(a) and 3(b).
�is system can switch between the two dynamics at any state.
Sample executions of the arbitrary switching dynamics are shown
in Figure 3(c). �is experiment will be used to illustrate di�erent
ways of choosing the initial predicates for state-space partition in
the hybridization and qpa procedures. We will choose predicates
manually by creating an input �le to determine them, and we will
choose automatically by providing certain input parameters.

Experiment 4. It will consider a 2-dimensional stable switched
system as shown in Figure 2(b). We will illustrate hybridization on
it, by showing the over-approximated polyhedral switched system.

4 Conclusion
�e proposed demo shows an automatic approach for stability veri�-
cation of hybrid systems. Input data can be easily de�ned by people
with no experience in hybrid systems and running Averist does
not require a formal knowledge on control systems and stability
analysis.
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